Giải bài 44 trang 23 sách bài tập toán 11 - Cánh diều
Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
Đề bài
Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
a) \(y = \sin x\) trên khoảng \(\left( { - \frac{{19\pi }}{2}; - \frac{{17\pi }}{2}} \right)\); \(\left( { - \frac{{13\pi }}{2}; - \frac{{11\pi }}{2}} \right)\)
b) \(y = \cos x\) trên khoảng \(\left( {19\pi ;20\pi } \right)\); \(\left( { - 30\pi ; - 29\pi } \right)\)
Phương pháp giải - Xem chi tiết
Với \(k \in \mathbb{Z}\), ta có:
+ Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\).
+ Hàm số \(y = \cos x\) đồng biến trên mỗi khoảng \(\left( { - \pi + k2\pi ;k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi + k2\pi } \right)\).
Chọn các giá trị \(k\) phù hợp.
Lời giải chi tiết
Với \(k \in \mathbb{Z}\), ta có:
+ Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\).
+ Hàm số \(y = \cos x\) đồng biến trên mỗi khoảng \(\left( { - \pi + k2\pi ;k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi + k2\pi } \right)\).
Chọn \(k = - 5\), ta có hàm số \(y = \sin x\) nghịch biến trên khoảng \(\left( { - \frac{{19\pi }}{2}; - \frac{{17\pi }}{2}} \right)\).
Chọn \(k = - 3\), ta có hàm số \(y = \sin x\) đồng biến trên khoảng \(\left( { - \frac{{13\pi }}{2}; - \frac{{11\pi }}{2}} \right)\).
Chọn \(k = 10\), ta có hàm số \(y = \cos x\) đồng biến trên khoảng \(\left( {19\pi ;20\pi } \right)\).
Chọn \(k = - 15\), ta có hàm số \(y = \cos x\) nghịch biến trên khoảng \(\left( { - 30\pi ; - 29\pi } \right)\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 44 trang 23 sách bài tập toán 11 - Cánh diều timdapan.com"