Bài 43 trang 45 SBT toán 7 tập 2
Giải bài 43 trang 45 sách bài tập toán 7. Cho hai đường thẳng AB và CD cắt nhau tại O. Tìm tập hợp các điểm cách đều hai đường thẳng AB và CD.
Đề bài
Cho hai đường thẳng \(AB\) và \(CD\) cắt nhau tại \(O.\) Tìm tập hợp các điểm cách đều hai đường thẳng \(AB\) và \(CD.\)
Phương pháp giải - Xem chi tiết
Sử dụng: Tập hợp các điểm nằm bên trong một góc và cách đều hai cạnh của góc là tia phân giác của góc đó.
Lời giải chi tiết
Xét \(M\) nằm trong góc \(AOD\) và cách đều \(OA \) và \(OD\) thì \(M\) thuộc tia phân giác \(Ox\) của góc \(AOD\)
Ngược lại: Nếu \(M\) thuộc tia phân giác của \(Ox\) của góc \(AOD\) thì \(M\) nằm trong góc \(AOD\) và \(M\) cách đều hai cạnh \(OA\) và \(OD\) (tính chất tia phân giác)
Suy ra tập hợp điểm \(M\) là tia phân giác \(Ox\) của góc \(AOD.\)
Tương tự, \(M\) nằm trong các góc \(AOC, DOB, BOC\) thì ta có tập hợp các điểm \(M\) là tia phân giác \(Ox', Oy', Oy.\)
Vậy tập hợp các điểm \(M\) cách đều hai đường thẳng \(AB\) và \(CD\) cắt nhau tại \(O\) là hai đường thẳng \(xx’ \) và \(yy’\) là đường phân giác của các góc tạo bởi hai đường thẳng \(AB\) và \(CD.\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 43 trang 45 SBT toán 7 tập 2 timdapan.com"