Giải bài 4.29 trang 71 SGK Toán 10 – Kết nối tri thức
Trong mặt phẳng tọa độ, vectơ nào sau đây có độ dài bằng 1?
Đề bài
Trong mặt phẳng tọa độ, vectơ nào sau đây có độ dài bằng 1?
A. \(\overrightarrow a = (1;1)\)
B. \(\overrightarrow b = (1; - 1)\)
C. \(\overrightarrow c = \left( {2;\frac{1}{2}} \right)\)
D. \(\overrightarrow d = \left( {\dfrac{1}{{\sqrt 2 }};\dfrac{{ - 1}}{{\sqrt 2 }}} \right)\)
Phương pháp giải - Xem chi tiết
Tính độ dài vectơ \(\overrightarrow a \;(x;y)\) theo công thức: \(|\overrightarrow a |\, = \sqrt {{x^2} + {y^2}} \).
Lời giải chi tiết
A. Ta có: \(\overrightarrow a = (1;1) \Rightarrow \;|\overrightarrow a |\; = \sqrt {{1^2} + {1^2}} = \sqrt 2 \ne 1\). (Loại)
B. Ta có: \(\overrightarrow b = (1; - 1) \Rightarrow \;|\overrightarrow b |\; = \sqrt {{1^2} + {{( - 1)}^2}} = \sqrt 2 \ne 1\). (Loại)
C. Ta có: \(\overrightarrow c = \left( {2;\dfrac{1}{2}} \right) \Rightarrow \;|\overrightarrow c |\; = \sqrt {{2^2} + {{\left( {\dfrac{1}{2}} \right)}^2}} = \dfrac{{\sqrt {17} }}{2} \ne 1\). (Loại)
D. Ta có: \(\overrightarrow d = \left( {\dfrac{1}{{\sqrt 2 }};\frac{{ - 1}}{{\sqrt 2 }}} \right) \Rightarrow \;|\overrightarrow a |\; = \sqrt {{{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\frac{{11}}{{\sqrt 2 }}} \right)}^2}} = 1\). (Thỏa mãn yc)
Chọn D
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 4.29 trang 71 SGK Toán 10 – Kết nối tri thức timdapan.com"