Giải bài 4.25 trang 70 SGK Toán 10 – Kết nối tri thức
Chứng minh rằng với mọi tam giác ABC, ta có
Đề bài
Chứng minh rằng với mọi tam giác ABC, ta có:
\({S_{ABC}} = \frac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} .\)
Phương pháp giải - Xem chi tiết
Biến đổi vế trái, đưa về công thức \({S_{ABC}} = \dfrac{1}{2}bc.\sin A\)
+) \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)
+) \({\sin ^2}\alpha = 1 - {\cos ^2}\alpha \) với mọi \(\alpha \).
Lời giải chi tiết
Đặt \(A = \dfrac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} \)
\(\begin{array}{l} \Rightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2} - {{\left( {AB.AC.\cos A} \right)}^2}} \\ \Leftrightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2}\left( {1 - {{\cos }^2}A} \right)} \end{array}\)
Mà \(1 - {\cos ^2}A = {\sin ^2}A\)
\( \Rightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2}.{{\sin }^2}A} \)
\( \Leftrightarrow A = \dfrac{1}{2}.AB.AC.\sin A\) (Vì \({0^o} < \widehat A < {180^o}\) nên \(\sin A > 0\))
Do đó \(A = {S_{ABC}}\) hay \({S_{ABC}} = \dfrac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} .\) (đpcm)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 4.25 trang 70 SGK Toán 10 – Kết nối tri thức timdapan.com"