Bài 42 trang 13 SBT toán 8 tập 2

Giải bài 42 trang 13 sách bài tập toán 8. Cho phương trình ẩn x : ...


Cho phương trình ẩn \(x\) :

\(\displaystyle{{x + a} \over {a - x}} + {{x - a} \over {a + x}} = {{a\left( {3a + 1} \right)} \over {{a^2} - {x^2}}}\)

LG a

Giải phương trình với \(\displaystyle a = -3\;;\)

Phương pháp giải:

Thay giá trị của \(a\) vào phương trình đã cho rồi giải phương trình ẩn \(x\) để tìm \(x\).

*) Giải phương trình chứa ẩn ở mẫu 

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

Khi \(a = -3\), ta có phương trình:

\(\displaystyle{{x - 3} \over { - 3 - x}} + {{x + 3} \over { - 3 + x}} = {{ - 3\left[ {3\left( { - 3} \right) + 1} \right]} \over {{{\left( { - 3} \right)}^2} - {x^2}}}\)

ĐKXĐ: \(\displaystyle x \ne  \pm 3\)

\(\displaystyle\eqalign{  &  \Leftrightarrow {{3 - x} \over {x + 3}} + {{x + 3} \over {x - 3}} = {{24} \over {9 - {x^2}}}  \cr  &  \Leftrightarrow {{3 - x} \over {x + 3}} + {{x + 3} \over {x - 3}} =  {{-24} \over {{x^2} - 9}} \cr} \)

\(\displaystyle \Leftrightarrow {{\left( {3 - x} \right)\left( {x - 3} \right)} \over {{x^2} - 9}} + {{\left( {x + 3} \right)\left( {x + 3} \right)} \over {{x^2} - 9}} \) \(\displaystyle =  {{-24} \over {{x^2} - 9}}  \)

\(\displaystyle  \Rightarrow \left( {3 - x} \right)\left( {x - 3} \right) + {\left( {x + 3} \right)^2} =  - 24 \)

\(\displaystyle \Leftrightarrow 3x - 9 - {x^2} + 3x + {x^2} + 6x + 9 \) \(=  - 24 \)

\(\displaystyle  \Leftrightarrow 12x =  - 24\) 

\(\displaystyle \Leftrightarrow x =  - 2\) (thỏa mãn)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{ -2 \right \}.\)


LG b

Giải phương trình với \(a = 1\;;\)

Phương pháp giải:

Thay giá trị của \(a\) vào phương trình đã cho rồi giải phương trình ẩn \(x\) để tìm \(x\).

*) Giải phương trình chứa ẩn ở mẫu 

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

Khi \(a = 1\), ta có phương trình :

\(\displaystyle{{x + 1} \over {1 - x}} + {{x - 1} \over {1 + x}} = {{1\left( {3.1 + 1} \right)} \over {{1^2} - {x^2}}}\)

ĐKXĐ: \(\displaystyle x \ne  \pm 1\)

\(\displaystyle  \Leftrightarrow {{x + 1} \over {1 - x}} + {{x - 1} \over {1 + x}} = {4 \over {1 - {x^2}}}  \)

\(\displaystyle   \Leftrightarrow {{{{\left( {x + 1} \right)}^2}} \over {1 - {x^2}}} + {{\left( {x - 1} \right)\left( {1 - x} \right)} \over {1 - {x^2}}} \) \(\displaystyle = {4 \over {1 - {x^2}}}  \)

\(\displaystyle   \Rightarrow {\left( {x + 1} \right)^2} + \left( {x - 1} \right)\left( {1 - x} \right) = 4  \)

\(\displaystyle  \Leftrightarrow {x^2} + 2x + 1 + x - {x^2} - 1 + x = 4  \)

\(\displaystyle  \Leftrightarrow 4x = 4  \) \(\displaystyle \Leftrightarrow x = 1\) (loại)

 Vậy phương trình vô nghiệm.


LG c

Giải phương trình với \(a = 0\;;\) 

Phương pháp giải:

Thay giá trị của \(a\) vào phương trình đã cho rồi giải phương trình ẩn \(x\) để tìm \(x\).

*) Giải phương trình chứa ẩn ở mẫu 

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

Khi \(a = 0\), ta có phương trình: \(\displaystyle{x \over { - x}} + {x \over x} = {0 \over {-{x^2}}}\)       

ĐKXĐ: \(\displaystyle x \ne 0\)

Khi đó: \(\displaystyle{x \over { - x}} + {x \over x} = {0 \over {-{x^2}}}\)  

\(\displaystyle\eqalign{
& \Rightarrow \displaystyle{-x^2 \over {  x^2}} + {x^2 \over x^2} = {0 \over {{x^2}}} \cr & \Rightarrow - x^2 + x^2 = 0 \cr 
& \Leftrightarrow 0x^2 = 0 \cr} \)

Phương trình có nghiệm đúng với mọi giá trị của \(\displaystyle x \ne 0\)

 Vậy phương trình có tập nghiệm \(\displaystyle S = \{x \in R|x \ne 0\}\)


LG d

Tìm các giá trị của \(a\) sao cho phương trình nhận \(\displaystyle x = {1 \over 2}\) làm nghiệm.

Phương pháp giải:

Thay giá trị của \(x\) vào phương trình đã cho rồi giải phương trình ẩn \(a\) để tìm \(a\).

*) Giải phương trình chứa ẩn ở mẫu 

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

Thay \(\displaystyle x = {1 \over 2}\) vào phương trình, ta có:

\(\displaystyle{\displaystyle{{1 \over 2} + a} \over {a - \displaystyle {1 \over 2}}} + {\displaystyle {{1 \over 2} - a} \over {a + \displaystyle {1 \over 2}}} = {\displaystyle {a\left( {3a + 1} \right)} \over {{a^2} - {\displaystyle {\left( {{1 \over 2}} \right)}^2}}}\)

ĐKXĐ: \(\displaystyle a \ne  \pm {1 \over 2}\)

\(\displaystyle \Leftrightarrow {\displaystyle {\displaystyle {1 \over 2} + a} \over {a - \displaystyle {1 \over 2}}} + {\displaystyle{\displaystyle {1 \over 2} - a} \over {a + \displaystyle {1 \over 2}}} = {\displaystyle {a\left( {3a + 1} \right)} \over {{a^2} - \displaystyle {1 \over 4}}}  \)

\(\displaystyle  \Leftrightarrow {\displaystyle {1 + 2a} \over {2a - 1}} + {\displaystyle{1 - 2a} \over {2a + 1}} = {\displaystyle {4a\left( {3a + 1} \right)} \over {4{a^2} - 1}}\) 

\(\displaystyle  \Leftrightarrow {\displaystyle {\left( {1 + 2a} \right)\left( {2a + 1} \right)} \over {4{a^2} - 1}} \) \(\displaystyle + {\displaystyle {\left( {1 - 2a} \right)\left( {2a - 1} \right)} \over {4{a^2} - 1}} \) \(\displaystyle = {\displaystyle{4a\left( {3a + 1} \right)} \over {4{a^2} - 1}}\) 

\(\displaystyle  \Rightarrow \left( {1 + 2a} \right)\left( {2a + 1} \right) \)\(\displaystyle + \left( {1 - 2a} \right)\left( {2a - 1} \right) \) \(\displaystyle = 4a\left( {3a + 1} \right) \) 

\(\displaystyle  \Leftrightarrow 2a + 1 + 4{a^2} + 2a + 2a - 1 - 4{a^2} \) \(+ 2a = 12{a^2} + 4a  \) 

\(\displaystyle  \Leftrightarrow 12{a^2} - 4a = 0  \) 

\(\displaystyle  \Leftrightarrow 4a\left( {3a - 1} \right) = 0  \)

\(\displaystyle \Leftrightarrow 4a = 0\) hoặc \(\displaystyle 3a - 1 = 0\)

\(\displaystyle \Leftrightarrow a = 0\) hoặc \(\displaystyle 3a = 1 \) 

\(\displaystyle \Leftrightarrow a = 0\) (thỏa mãn) hoặc \(\displaystyle a = {1 \over 3}\) (thỏa mãn)

Vậy khi \(a = 0\) hoặc \(\displaystyle a = {1 \over 3}\) thì phương trình \(\displaystyle{{x + a} \over {a - x}} + {{x - a} \over {a + x}} = {{a\left( {3a + 1} \right)} \over {{a^2} - {x^2}}}\) nhận \(\displaystyle x = {1 \over 2}\) làm nghiệm.