Giải bài 4 trang 78 SGK Toán 7 tập 2 - Chân trời sáng tạo
Cho tam giác nhọn ABC có ba đường cao AB, BE, CF. Biết AD = BE = CF. Chứng minh rằng tam giác ABC đều.
Đề bài
Cho tam giác nhọn ABC có ba đường cao AB, BE, CF. Biết AD = BE = CF. Chứng minh rằng tam giác ABC đều.
Phương pháp giải - Xem chi tiết
- Ta chứng tam giác BFC = tam giác BEC
- Từ đó suy ra góc B = góc C
- Chứng minh tương tự suy ra được góc A = góc B = góc C
Lời giải chi tiết
Xét tam giác BFC và tam giác BEC có :
BC chung
FC = BE
\(\widehat {BFC} = \widehat {BEC} = {90^o}\)
( cạnh huyền – cạnh góc vuông)
\( \Rightarrow \widehat C = \widehat B\) ( 2 góc tương ứng ) (1)
Xét tam giác CFA và tam giác ADC ta có :
CF = AD
AC chung
\(\widehat {ADC} = \widehat {AFC} = {90^o}\)
(cạnh huyền – cạnh góc vuông)
\( \Rightarrow \widehat C = \widehat A\)(2 góc tương ứng ) (2)
Từ (1) và (2) \( \Rightarrow \widehat C = \widehat A = \widehat B\) \( \Rightarrow \)Tam giác ABC là tam giác đều do có 3 góc bằng nhau
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 4 trang 78 SGK Toán 7 tập 2 - Chân trời sáng tạo timdapan.com"