Bài 37 trang 25 SBT toán 7 tập 2
Giải bài 37 trang 25 sách bài tập toán 7. Tính giá trị của các đa thức sau:...
Đề bài
Tính giá trị của các đa thức sau:
a) \({x^2} + {x^4} + {x^6} +{x^8} + ... + {x^{100}}\) tại \(x = -1\)
b) \(a{x^2} + bx + c\) tại \(x = -1; x = 1\) \((a, b, c\) là hằng số).
Phương pháp giải - Xem chi tiết
Thay \(x=x_0\) vào đa thức rồi tính toán.
Lời giải chi tiết
a) Thay giá trị \(x = -1\) vào đa thức, ta có:
\({( - 1)^2} + {( - 1)^4} + {( - 1)^6} + ... + {( - 1)^{100}} \)
\(= \underbrace {1 + 1 + 1 + ... + 1}_{} = 50\)
\(50\) số hạng
Vậy giá trị đa thức bằng \(50\) tại \(x = - 1\)
b) +) Thay \(x = -1\) vào đa thức, ta có:
\({\rm{a}}{\left( { - 1} \right)^2} + b\left( { - 1} \right) + c = a - b + c\)
Vậy giá trị đa thức bằng \(a – b + c\) tại \(x = -1\)
+) Thay \(x = 1\) vào đa thức, ta có:
\({\rm{a}}{.1^2} + b.1 + c = a + b + c\).
Vậy giá trị đa thức bằng \(a + b + c\) tại \(x = 1.\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 37 trang 25 SBT toán 7 tập 2 timdapan.com"