Bài 3.6 trang 164 SBT giải tích 12

Giải bài 3.6 trang 164 SBT giải tích 12. Tính các nguyên hàm sau:...


Tính các nguyên hàm sau:

LG câu a

a) \(\int {x{{(3 - x)}^5}dx} \)

Phương pháp giải:

Đổi biến \(t = 3 - x\).

Giải chi tiết:

Đặt \(t = 3 - x \Rightarrow dt =  - dx\).

Khi đó \(\int {x{{(3 - x)}^5}dx} \) \( = \int {\left( {3 - t} \right).{t^5}.\left( { - dt} \right)} \) \( = \int {\left( { - 3{t^5} + {t^6}} \right)dt} \) \( =  - 3.\dfrac{{{t^6}}}{6} + \dfrac{{{t^7}}}{7} + C\) \( = \dfrac{{ - {{\left( {3 - x} \right)}^6}}}{2} + \dfrac{{{{\left( {3 - x} \right)}^7}}}{7} + C\)


LG câu b

b) \(\int {{{({2^x} - {3^x})}^2}} dx\)

Phương pháp giải:

Sử dụng công thức nguyên hàm cơ bản \(\int {{a^x}dx}  = \dfrac{{{a^x}}}{{\ln a}} + C\).

Giải chi tiết:

Ta có: \(\int {{{({2^x} - {3^x})}^2}} dx\)\( = \int {\left( {{2^{2x}} + {3^{2x}} - {{2.2}^x}{{.3}^x}} \right)dx} \) \( = \int {{2^{2x}}dx}  + \int {{3^{2x}}dx}  - 2\int {{6^x}dx} \) \( = \int {{4^x}dx}  + \int {{9^x}dx}  - 2.\int {{6^x}dx} \) \( = \dfrac{{{4^x}}}{{\ln 4}} + \dfrac{{{9^x}}}{{\ln 9}} - 2.\dfrac{{{6^x}}}{{\ln 6}} + C\).


LG câu c

c) \(\int {x\sqrt {2 - 5x} dx} \)

Phương pháp giải:

Đổi biến \(t = \sqrt {2 - 5x} \).

Giải chi tiết:

Đặt \(t = \sqrt {2 - 5x}  \Rightarrow {t^2} = 2 - 5x\) \( \Rightarrow 2tdt =  - 5dx \Rightarrow dx =  - \dfrac{{2tdt}}{5}\)

Khi đó \(\int {x\sqrt {2 - 5x} dx} \) \( = \int {\dfrac{{2 - {t^2}}}{5}.t.\left( {\dfrac{{ - 2tdt}}{5}} \right)} \) \( =  - \dfrac{2}{{25}}\int {\left( {2{t^2} - {t^4}} \right)dt} \) \( =  - \dfrac{2}{{25}}\left( {\dfrac{2}{3}{t^3} - \dfrac{{{t^5}}}{5}} \right) + C\)

\( =  - \dfrac{4}{{75}}{\left( {\sqrt {2 - 5x} } \right)^3} + \dfrac{2}{{125}}{\left( {\sqrt {2 - 5x} } \right)^5} + C\)


LG câu d

d) \(\int {\dfrac{{\ln (\cos x)}}{{{{\cos }^2}x}}} dx\)

Phương pháp giải:

Đặt \(u = \ln (\cos x),dv = \dfrac{{dx}}{{{{\cos }^2}x}}\) và sử dụng công thức nguyên hàm từng phần \(\int {udv}  = uv - \int {vdu} \).

Giải chi tiết:

Đặt \(u = \ln (\cos x),dv = \dfrac{{dx}}{{{{\cos }^2}x}}\) suy ra \(\left\{ \begin{array}{l}du = \dfrac{{ - \sin x}}{{\cos x}} =  - \tan x\\v = \tan x\end{array} \right.\)

Khi đó \(\int {\dfrac{{\ln (\cos x)}}{{{{\cos }^2}x}}} dx\)\( = \tan x\ln \left( {\cos x} \right) + \int {{{\tan }^2}xdx} \)

\( = \tan x\ln \left( {\cos x} \right) + \int {\left( {{{\tan }^2}x + 1 - 1} \right)dx} \) \( = \tan x\ln \left( {\cos x} \right) + \int {\left( {{{\tan }^2}x + 1} \right)dx}  + \int {dx} \)

\( = \tan x\ln \left( {\cos x} \right) + \tan x - x + C\) \( = \tan x\left[ {\ln \left( {\cos x} \right) + 1} \right] - x + C\)


LG câu e

e) \(\int {\dfrac{x}{{{{\sin }^2}x}}} dx\)

Phương pháp giải:

Đặt \(u = x,dv = \dfrac{{dx}}{{{{\sin }^2}x}}\) và sử dụng công thức nguyên hàm từng phần \(\int {udv}  = uv - \int {vdu} \).

Giải chi tiết:

Đặt \(u = x,dv = \dfrac{{dx}}{{{{\sin }^2}x}}\)\( \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \cot x\end{array} \right.\)

Khi đó \(\int {\dfrac{x}{{{{\sin }^2}x}}} dx\)\( =  - x\cot x + \int {\cot xdx} \) \( =  - x\cot x + \int {\dfrac{{\cos x}}{{\sin x}}dx} \) \( =  - x\cot x + \int {\dfrac{{d\left( {\sin x} \right)}}{{\sin x}}} \)

\( =  - x\cot x + \ln \left| {\sin x} \right| + C\)


LG câu g

g) \(\int {\dfrac{{x + 1}}{{(x - 2)(x + 3)}}dx} \)

Phương pháp giải:

Tách \(\dfrac{{x + 1}}{{(x - 2)(x + 3)}} = \dfrac{3}{{5(x - 2)}} + \dfrac{2}{{5(x + 3)}}\) và tính nguyên hàm theo công thức \(\int {\dfrac{1}{{ax + b}}dx}  = \dfrac{{\ln \left| {ax + b} \right|}}{a} + C\).

Giải chi tiết:

Ta có  \(\dfrac{{x + 1}}{{(x - 2)(x + 3)}} = \dfrac{3}{{5(x - 2)}} + \dfrac{2}{{5(x + 3)}}\)

Khi đó \(\int {\dfrac{{x + 1}}{{(x - 2)(x + 3)}}dx} \)\( = \int {\left( {\dfrac{3}{{5(x - 2)}} + \dfrac{2}{{5(x + 3)}}} \right)dx} \) \( = \dfrac{3}{5}\int {\dfrac{{dx}}{{x - 2}}}  + \dfrac{2}{5}\int {\dfrac{{dx}}{{x + 3}}} \)

\( = \dfrac{3}{5}\ln \left| {x - 2} \right| + \dfrac{2}{5}\ln \left| {x + 3} \right| + C\) \( = \dfrac{1}{5}\left[ {\ln {{\left| {x - 2} \right|}^3}{{\left( {x + 3} \right)}^2}} \right] + C\)


LG câu h

h) \(\int {\dfrac{1}{{1 - \sqrt x }}} dx\)

Phương pháp giải:

Đổi biến đặt \(t = \sqrt x \).

Giải chi tiết:

Đặt \(t = \sqrt x  \Rightarrow x = {t^2} \Rightarrow dx = 2tdt\).

Khi đó \(\int {\dfrac{1}{{1 - \sqrt x }}} dx\)\( = \int {\dfrac{1}{{1 - t}}.2tdt}  = \int {\left( { - 2 + \dfrac{2}{{1 - t}}} \right)dx} \)

\( =  - 2t - 2\ln \left| {1 - t} \right| + C\) \( =  - 2\sqrt x  - 2\ln \left| {1 - \sqrt x } \right| + C\)


LG câu i

i) \(\int {\sin 3x\cos 2xdx} \)

Phương pháp giải:

Khai triển \(\sin 3x.\cos 2x = \dfrac{1}{2}\left( {\sin x + \sin 5x} \right)\) và tính nguyên hàm.

Giải chi tiết:

Ta có: \(\sin 3x.\cos 2x = \dfrac{1}{2}\left( {\sin x + \sin 5x} \right)\).

Khi đó \(\int {\sin 3x\cos 2xdx} \)\( = \dfrac{1}{2}\int {\left( {\sin x + \sin 5x} \right)dx} \)

\( = \dfrac{1}{2}\left( { - \cos x - \dfrac{{\cos 5x}}{5}} \right) + C\)\( =  - \dfrac{1}{2}\left( {\cos x + \dfrac{1}{5}\cos 5x} \right) + C\).

Bài giải tiếp theo
Bài 3.7 trang 164 SBT giải tích 12
Bài 3.8 trang 165 SBT giải tích 12
Bài 3.9 trang 165 SBT giải tích 12
Bài 3.10 trang 165 SBT giải tích 12
Bài 3.11 trang 165 SBT giải tích 12
Bài 3.12 trang 165 SBT giải tích 12
Bài 3.13 trang 166 SBT giải tích 12
Bài 3.14 trang 166 SBT giải tích 12
Bài 3.15 trang 166 SBT giải tích 12

Video liên quan



Từ khóa