Bài 33 trang 104 Vở bài tập toán 7 tập 1

Giải bài 33 trang 104 VBT toán 7 tập 1. Cho định lí: " Nếu hai đường thẳng xx', yy' cắt nhau tại O góc xOy vuông ...


Đề bài

Cho định lí: " Nếu hai đường thẳng \(xx', yy'\) cắt nhau tại \(O\) góc \(xOy\) vuông thì các góc \(yOx', x'Oy', y'Ox\) đều là góc vuông".

a) Hãy vẽ hình và viết giả thiết, kết luận định lí.

GT ...

KL ...

b) Điền vào chỗ trống (...) trong các câu sau để chứng minh định lí:

 1) \(\widehat{xOy} + \widehat{x'Oy} = {180^o}\)    (vì ...).

 2) \({90^o}+\widehat{x'Oy} = {180^o}\)    (theo giả thiết và căn cứ vào ...).

 3) \(\widehat{x'Oy}={90^o}\)      (căn cứ vào ...).

 4) \(\widehat{x'Oy'}              =  \widehat{xOy}\)  (Vì ...).

 5) \(\widehat{x'Oy'}={90^o}\)        (căn cứ vào).

 6) \(\widehat{y'Ox}                = \widehat{x'Oy}\)  (vì ...).

 7) \(\widehat{y'Ox}={90^o}\)      (căn cứ vào ...).

c) Hãy trình bày lại chứng minh một cách ngắn gọn hơn.

Phương pháp giải - Xem chi tiết

- Hai góc đối đỉnh thì bằng nhau.

- Hai góc kề bù có tổng bằng \(180^0.\)

Lời giải chi tiết

a) 

b) 

 1) \(\widehat{xOy} + \widehat{x'Oy} = {180^o}\)    (vì là hai góc kề bù).

 2) \({90^o}+\widehat{x'Oy} = {180^o}\)     (theo giả thiết và căn cứ vào 1).

 3) \(\widehat{x'Oy}={90^o}\)      (căn cứ vào 2).

 4) \(\widehat{x'Oy'}               =  \widehat{xOy}\)  (vì là hai góc đối đỉnh).

 5) \(\widehat{x'Oy'}={90^o}\)      (căn cứ vào 4 và giả thiết).

 6) \(\widehat{y'Ox}              = \widehat{x'Oy}\)  (vì là hai góc đối đỉnh).

 7) \(\widehat{y'Ox}={90^o}\)         (căn cứ vào 6 và 3).

c) Trình bày lại cách chứng minh một cách gọn hơn.

Ta có: \(\widehat{xOy} + \widehat{x'Oy}=180^o\) (hai góc kề bù)

Mà \(\widehat{xOy}={90^o}\) (gt) nên \({90^o}+\widehat{x'Oy}={180^o}\)

\( \Rightarrow \widehat{x'Oy}=180^o-90^o={90^o}\) 

\(\widehat{x'Oy}  =  \widehat{xOy'}\)  (hai góc đối đỉnh).

\( \Rightarrow \widehat{y'Ox}={90^o}\)

\(\widehat{x'Oy'}               =  \widehat{xOy}\)  (hai góc đối đỉnh).

\( \Rightarrow \widehat{x'Oy'}={90^o}\)