Giải bài 2.15 trang 32 SGK Toán 10 tập 1 – Kết nối tri thức

Bác An đầu tư 1,2 tỉ đồng vào ba loại trái phiếu, trái phiếu chính phủ với lãi suất 7% một năm, trái phiếu ngân hàng với lãi suất 8% một năm và trái phiếu doanh nghiệp rủi ro cao với lãi suất 12% một năm.


Đề bài

Bác An đầu tư 1,2 tỉ đồng vào ba loại trái phiếu, trái phiếu chính phủ với lãi suất 7% một năm, trái phiếu ngân hàng với lãi suất 8% một năm và trái phiếu doanh nghiệp rủi ro cao với lãi suất 12% một năm. Vì lí do giảm thuế, bác An muốn số tiền đầu tư trái phiếu chính phủ gấp ít nhất 3 lần số tiền đầu tư trái phiếu ngân hàng. Hơn nữa, để giảm thiểu rủi ro, bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp. Hỏi bác An nên đầu tư mỗi loại trái phiếu bao nhiêu tiền để lợi nhuận thu được sau một năm là lớn nhất?

Phương pháp giải - Xem chi tiết

Bước 1: Gọi x là số tiền mua trái phiếu ngân hàng và y là số tiền mua trái phiếu doanh nghiệp và biểu diễn các dữ kiện bài cho thành hệ bất phương trình tương ứng.

Bước 2: Lập biểu thức về lợi nhuận thu được F theo x và y. Từ đó tìm giá trị lớn nhất của F.

Lời giải chi tiết

 

Trái phiếu chính phủ

Trái phiếu ngân hàng

Trái phiếu doanh nghiệp

Lãi suất

7%/năm

8%/năm

12%/năm

 Bước 1:

1,2 tỉ đồng=1200 (triệu đồng)

Gọi x là số tiền mua trái phiếu ngân hàng và y là số tiền mua trái phiếu doanh nghiệp.

Khi đó \(x \ge 0,y \ge 0\).

Bác An đầu tư 1,2 tỉ đồng vào ba loại trái phiếu, trái phiếu chính phủ nên số tiền đầu tư trái phiếu chính phủ là \(1200 - x - y\) (triệu đồng)

Số tiền đầu tư trái phiếu chính phủ gấp ít nhất 3 lần số tiền đầu tư trái phiếu ngân hàng nên ta có: \(1200 - x - y \ge 3x \Leftrightarrow 4x + y \le 1200\)

Bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp nên \(y \le 200\)

Từ điều kiện của bài toán ta có số tiền bác An đầu tư trái phiếu phải thỏa mãn hệ:

\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\4x + y \le 1200\\y \le 200\end{array} \right.\)

Xác định miền nghiệm là miền tứ giác OABC với:

O(0;0); A(300;0); B(250;200); C(0;200).

 

Bước 2: Lợi nhuận thu được sau một năm là

\(\begin{array}{l}F\left( {x;y} \right) = \left( {1200 - x - y} \right).7\%  + x.8\%  + y.12\% \\ = 84 + 0,01x + 0,05y\end{array}\)

Ta cần tìm giá trị lớn nhất của F(x;y) khi (x;y) thỏa mãn hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\4x + y \le 1200\\y \le 200\end{array} \right.\)

Thay tọa độ các điểm O, A, B, C vào biểu thức F(x;y) ta được:

\(F\left( {0;0} \right) = 80\)

\(F\left( {300;0} \right) = 84 + 0,01.300 + 0,05.0 = 87\)

\(F\left( {250;200} \right) = 84 + 0,01.250 + 0,05.200 = 96,5\)

\(F\left( {0;200} \right) = 84 + 0,01.0 + 0,05.200 = 94\)

=> F đạt giá trị lớn nhất là 96,5 nếu x=250 và y=200.

Vậy bác An nên đầu tư 250 triệu đồng trái phiếu ngân hàng, 200 triệu trái phiếu doanh nghiệp và 750 trái phiếu chính phủ.

Chú ý

Đổi về đơn vị triệu đồng.



Bài học liên quan

Từ khóa phổ biến