Giải bài 14 trang 37 sách bài tập toán 10 - Cánh diều

Cho mẫu số liệu: 21 22 23 24 25


Đề bài

Cho mẫu số liệu: 21 22 23 24 25

a) Khoảng biến thiên của mẫu số liệu trên là:

A. 1              B. 2              C. 3              D. 4

b) Khoảng tứ phân vị của mẫu số liệu trên là:

A. 1              B. 2              C. 3              D. 4

c) Phương sai của mẫu số liệu trên là:

A. 1              B. 2              C. 3              D. 4

d) Độ lệch chuẩn của mẫu số liệu trên là:

A. 1              B. \(\sqrt 2 \)                    C. \(\sqrt 3 \)                   D. 4

Phương pháp giải - Xem chi tiết

+ Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\) với số cao nhất và thấp nhất lần lượt \({x_n},{x_1}\)

+ Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1}\)

Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.

Bước 2: Tính cỡ mẫu \(n\), tìm tứ phân vị thứ hai \({Q_2}\)(chính là trung vị của mẫu).

Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

+ Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\) và độ lệch chuẩn \(S = \sqrt {{S^2}} \)

Lời giải chi tiết

Cho mẫu số liệu: 21 22 23 24 25

a) Số cao nhất và thấp nhất lần lượt là 25 và 21 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 25 - 21 = 4\)

Chọn D.

b) Tứ phân vị: \({Q_2} = 23\); \({Q_1} = \left( {21 + 22} \right):2 = 21,5;{Q_3} = \left( {24 + 25} \right):2 = 24,5 \Rightarrow \Delta Q = {Q_3} - {Q_1} = 24,5 - 21,5 = 3\)

Chọn C.

c) Phương sai: \({S^2} = 2\)

Chọn B.

d) Độ lệch chuẩn: \(S = \sqrt {{S^2}}  = \sqrt 2 \)

Chọn B.



Từ khóa phổ biến