Giải bài 13 trang 96 SGK Toán 10 – Kết nối tri thức
Từ các công thức tính diện tích tam giác đã được học, hãy chứng minh rằng, trong tam giác ABC, ta có
Đề bài
Từ các công thức tính diện tích tam giác đã được học, hãy chứng minh rằng, trong tam giác ABC, ta có
\(r = \frac{{\sqrt {(b + c - a)(c + a - b)(a + b - c)} }}{{2\sqrt {a + b + c} }}\)
Lời giải chi tiết
Ta có: \(S = p.r \Rightarrow r = \frac{S}{p}\)
Mà \(S = \sqrt {p(p - a)(p - b)(p - c)} \) (công thức Heron), \(p = \frac{{a + b + c}}{2}\)
\(\begin{array}{l} \Rightarrow S = \sqrt {\frac{{a + b + c}}{2}\left( {\frac{{a + b + c}}{2} - a} \right)\left( {\frac{{a + b + c}}{2} - b} \right)\left( {\frac{{a + b + c}}{2} - c} \right)} \\ = \sqrt {\frac{1}{{16}}.\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} \\ = \frac{1}{4}\sqrt {\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} \end{array}\)
\(\begin{array}{l} \Rightarrow r = \frac{{\frac{1}{4}\sqrt {\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} }}{{\frac{1}{2}\left( {a + b + c} \right)}}\\ = \frac{1}{2}\frac{{\sqrt {\left( {a + b + c} \right)\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} }}{{a + b + c}}\\ = \frac{{\sqrt {\left( { - a + b + c} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} }}{{2\sqrt {a + b + c} }}\;\;(dpcm)\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 13 trang 96 SGK Toán 10 – Kết nối tri thức timdapan.com"