Bài 1.27 trang 36 SBT hình học 11
Giải bài 1.27 trang 36 sách bài tập hình học 11. Trong mặt phẳng Oxy cho đường thẳng d có phương trình x=...
Đề bài
Trong mặt phẳng \(Oxy\) cho đường thẳng \(d\) có phương trình \(x=2\sqrt{2}\). Hãy viết phương trình đường thẳng \(d’\) là ảnh của \(d\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm \(O\) tỉ số \(k=\dfrac{1}{2}\) và phép quay tâm \(O\) góc \({45}^o\).
Phương pháp giải - Xem chi tiết
Sử dụng định nghĩa phép vị tự: Cho \(I\) và \(k\ne 0\). Phép biến hình biến điểm \(M\) thành điểm \(M’\) sao cho \(\vec{IM’}=k\vec{IM}\) được gọi là phép vị tự tâm \(I\), tỉ số \(k\).
Sử dụng định nghĩa:
Cho \(O\) và góc lượng giác \(\alpha\). Phép biến hình biến \(O\) thành chính nó, biến mỗi điểm \(M\) khác \(O\) thành điểm \(M’\) sao cho \(OM’=OM\) và góc lượng giác \((OM;OM’)\) bằng \(\alpha\) được gọi là phép quay tâm \(O\) góc \(\alpha\).
Lời giải chi tiết
Gọi \(d_1\) là ảnh của \(d\) qua phép vị tự tâm \(O\) tỉ số \(k=\dfrac{1}{2}\) thì phương trình của \(d_1\) là \(x=\sqrt{2}\). Giả sử \(d’\) là ảnh của \(d_1\) qua phép quay tâm \(O\) góc \({45}^o\). Lấy \(M(\sqrt{2};0)\) thuộc \(d_1\) thì ảnh của nó qua phép quay tâm \(O\) góc \({45}^o\) là \(M’(1;1)\) thuộc \(d’\). Vì \(OM \bot {d_1},OM' \bot d'\).
Do đó \(d’\) là đường thẳng đi qua \(M’\) và vuông góc với \(OM’\). Khi đó \(d'\) có phương trình \(x+y-2=0\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.27 trang 36 SBT hình học 11 timdapan.com"