Giải bài 1.27 trang 21 SGK Toán 8 tập 1 - Kết nối tri thức

Làm tính nhân:


Đề bài

Làm tính nhân:

a)      \(\left( {{x^2} - xy + 1} \right)\left( {xy + 3} \right)\)

b)      \(\left( {{x^2}{y^2} - \dfrac{1}{2}xy + 2} \right)\left( {x - 2y} \right)\)

Phương pháp giải - Xem chi tiết

Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.

Lời giải chi tiết

a)

\(\begin{array}{l}\left( {{x^2} - xy + 1} \right)\left( {xy + 3} \right)\\ = {x^2}.xy + {x^2}.3 - xy.xy - xy.3 + 1.xy + 1.3\\ = {x^3}y + 3{x^2} - {x^2}{y^2} - 3xy + xy + 3\\ = {x^3}y + 3{x^2} - {x^2}{y^2} + \left( { - 3xy + xy} \right) + 3\\ = {x^3}y + 3{x^2} - {x^2}{y^2} - 2xy + 3\end{array}\)

b)

\(\begin{array}{l}\left( {{x^2}{y^2} - \dfrac{1}{2}xy + 2} \right)\left( {x - 2y} \right)\\ = {x^2}{y^2}.x - {x^2}{y^2}.2y - \dfrac{1}{2}xy.x + \dfrac{1}{2}xy.2y + 2.x - 2.2y\\ = {x^3}{y^2} - 2{x^2}{y^3} - \dfrac{1}{2}{x^2}y + x{y^2} + 2x - 4y\end{array}\)



Bài học liên quan

Từ khóa phổ biến