Giải bài 1.25 trang 21 SGK Toán 8 tập 1 - Kết nối tri thức
Tìm tích của đơn thức với đa thức:
Đề bài
Tìm tích của đơn thức với đa thức:
a) \(\left( { - 0,5} \right)x{y^2}\left( {2xy - {x^2} + 4y} \right)\)
b) \(\left( {{x^3}y - \dfrac{1}{2}{x^2} + \dfrac{1}{3}xy} \right)6x{y^3}\)
Phương pháp giải - Xem chi tiết
Muốn nhân đơn thức với đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau. Sau đó, nhóm các hạng tử đồng dạng để thu gọn đa thức.
Lời giải chi tiết
a)
\(\begin{array}{l}\left( { - 0,5} \right)x{y^2}\left( {2xy - {x^2} + 4y} \right)\\ = \left( { - 0,5} \right)x{y^2}.2xy - \left( { - 0,5} \right)x{y^2}.{x^2} + \left( { - 0,5} \right)x{y^2}.4y\\ = - {x^2}{y^3} + 0,5{x^3}{y^2} - 2x{y^3}\end{array}\)
b)
\(\begin{array}{l}\left( {{x^3}y - \dfrac{1}{2}{x^2} + \dfrac{1}{3}xy} \right)6x{y^3}\\ = {x^3}y.6x{y^3} - \dfrac{1}{2}{x^2}.6x{y^3} + \dfrac{1}{3}xy.6x{y^3}\\ = 6{x^4}{y^4} - 3{x^3}{y^3} + 2{x^2}{y^4}\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 1.25 trang 21 SGK Toán 8 tập 1 - Kết nối tri thức timdapan.com"