Câu 17 trang 19 SGK Hình học 11 Nâng cao
Cho hai điểm cố định trên đường tròn
Đề bài
Cho hai điểm cố định B, C trên đường tròn \((O; R)\) và một điểm A thay đổi trên đường tròn đó. Hãy dùng phép đối xứng tâm để chứng minh rằng trực tâm H của tam giác ABC nằm trên một đường tròn cố định
Hướng dẫn. Gọi I là trung điểm BC . Hãy vẽ đường kính AM của đường tròn rồi chứng minh rằng I là trung điểm của đoạn thẳng HM
Lời giải chi tiết
Nếu BC là đường kính thì tam giác ABC vuông tại A, do đó H trùng A nằm trên (O;R) cố định.
Nếu BC không là đường kính thì vẽ đường kính AM của đường tròn.
Khi đó,
BH // MC (vì cùng vuông góc với AC)
CH // MB (vì cùng vuông góc với AB)
Do đó BHCM là hình bình hành nên BC và MH cắt nhau tại trùng điểm I của mỗi đường.
Hay I là trung điểm của MH.
Vậy phép đối xứng qua điểm I biến M thành H.
Khi A chạy trên đường tròn \((O ; R)\) thì M chạy trên đường tròn \((O ; R)\).
Do đó, H nằm trên đường tròn là ảnh của đường tròn \((O ; R)\) qua phép đối xứng tâm I.
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 17 trang 19 SGK Hình học 11 Nâng cao timdapan.com"