Câu 17 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Cho dãy số (un) xác định bởi
Đề bài
Cho dãy số (un) xác định bởi
\(\displaystyle {u_1} = 1\,\text{ và }\,{u_{n + 1}} = {2 \over {u_n^2 + 1}}\) với mọi \(\displaystyle n ≥ 1\)
Chứng minh rằng (un) là một dãy số không đổi (dãy có tất cả các số hạng đều bằng nhau).
Phương pháp giải - Xem chi tiết
- Tính một vài số hạng đầu, nhận xét các số hạng của dãy.
- Chứng minh nhận xét bằng phương pháp quy nạp.
Lời giải chi tiết
Ta chứng minh \(\displaystyle u_n= 1\) (1) \(\displaystyle ∀ n \in \mathbb N^*\) bằng qui nạp
+) Rõ ràng (1) đúng với \(\displaystyle n = 1\)
+) Giả sử (1) đúng với \(\displaystyle n = k\), tức là ta có \(\displaystyle u_k = 1\)
+) Ta chứng minh (1) đúng với \(\displaystyle n = k + 1\).
Thật vậy theo công thức truy hồi và giả thiết quy nạp ta có :
\(\displaystyle {u_{k + 1}} = {2 \over {u_k^2 + 1}} = {2 \over {1^2 + 1}}=1\)
Vậy (1) đúng với \(\displaystyle n = k + 1\), do đó (1) đúng với mọi \(\displaystyle n \in \mathbb N^*\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 17 trang 109 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"