Câu 14 trang 106 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng


Đề bài

Chứng minh rằng dãy số \(\displaystyle (u_n)\) với \(\displaystyle {u_n} = {{2n + 3} \over {3n + 2}}\) là một dãy số giảm và bị chặn.

Phương pháp giải - Xem chi tiết

- Xét hiệu \(H = {u_{n + 1}} - {u_n}\), chứng minh \(H<0\).

- Đánh giá \(u_{n}\) bị chặn dưới và bị chặn trên, tức là chỉ ra tồn tại các số thực \(m,M\) sao cho \(m \le {u_n} \le M\).

Lời giải chi tiết

Ta có:

\(\displaystyle \eqalign{
& {u_n} = {{2n + 3} \over {3n + 2}} = {{{2 \over 3}\left( {3n + 2} \right) + {5 \over 3}} \over {3n + 2}} = {2 \over 3} + {5 \over {3\left( {3n + 2} \right)}} \cr 
& {u_{n + 1}} - {u_n} = {5 \over 3}\left( {{1 \over {3n + 5}} - {1 \over {3n + 2}}} \right) < 0 \cr 
& \Rightarrow {u_{n + 1}} < {u_n} \cr} \)

\(\displaystyle ⇒ (u_n)\) là dãy số giảm

Ta lại có  \(\displaystyle 0 < {{2n + 3} \over {3n + 2}} \le 1 \;\forall n \in\mathbb N^*\)

Vậy \(\displaystyle (u_n)\) là dãy số giảm và bị chặn.

 

Bài giải tiếp theo
Câu 15 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Câu 16 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Câu 18 trang 109 SGK Đại số và Giải tích 11 Nâng cao

Video liên quan