Bài 9 trang 81 SGK Hình học 12 Nâng cao

Xét sự đồng phẳng của ba vectơ trong mỗi trường hợp sau:


Xét sự đồng phẳng của ba vectơ \(\overrightarrow u ,\overrightarrow v \) và \(\overrightarrow {\rm{w}} \) trong mỗi trường hợp sau:

LG a

\(\overrightarrow u \left( {4;3;4} \right)\,,\,\overrightarrow v \left( {2; - 1;2} \right)\,;\,\overrightarrow {\rm{w}} \left( {1;2;1} \right)\)

Giải chi tiết:

Ta có:

\(\eqalign{
& \left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {\left| \matrix{
3\,\,\,\,\,\,4 \hfill \cr 
- 1\,\,\,2 \hfill \cr} \right|;\left| \matrix{
4\,\,\,\,\,4 \hfill \cr 
2\,\,\,\,\,\,2 \hfill \cr} \right|;\left| \matrix{
4\,\,\,\,\,\,3 \hfill \cr 
2\,\,\,\,\,\,\, - 1 \hfill \cr} \right|} \right) = \left( {10;0; - 10} \right) \cr 
& \Rightarrow \left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}} = 10.1 + 0.2 - 10.1 = 0 \cr} \)

Do đó \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.


LG b

\(\overrightarrow u \left( {1; - 1;1} \right)\,;\,\overrightarrow v \left( {0;1;2} \right)\,;\,\overrightarrow {\rm{w}} \left( {4;2;3} \right)\)

Giải chi tiết:

\(\left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}}  \ne 0 \Rightarrow \overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) không đồng phẳng.


LG c

\(\overrightarrow u \left( {4;2;5} \right)\,;\,\overrightarrow v \left( {3;1;3} \right)\,;\,\overrightarrow {\rm{w}} \left( {2;0;1} \right)\)

Giải chi tiết:

\(\left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}}  = 0 \Rightarrow \overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.