Bài 10 trang 81 SGK Hình học 12 Nâng cao

Cho ba điểm a) Chứng minh A, B, C không thẳng hàng. b) Tính chu vi và diện tích tam giác ABC. c) Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A. d) Tính các góc của tam giác ABC.


Cho ba điểm \(A\left( {1;0;0} \right)\,;\,B\left( {0;0;1} \right)\,;\,C\left( {2;1;1} \right)\)

LG a

Chứng minh A, B, C không thẳng hàng.

Giải chi tiết:

Ta có \(\overrightarrow {BA}  = \left( {1;0; - 1} \right),\overrightarrow {BC}  = \left( {2;1;0} \right)\).
Vì \({1 \over 2} \ne {0 \over 1} \Rightarrow \overrightarrow {BA} ,\overrightarrow {BC} \) không cùng phương do đó A, B, C thẳng hàng.


LG b

Tính chu vi và diện tích tam giác ABC.

Giải chi tiết:

Ta có

\(\eqalign{
& AB = \sqrt {{1^2} + {0^2} + {{\left( { - 1} \right)}^2}} = \sqrt 2 \cr 
& BC = \sqrt {{2^2} + {1^2} + {0^2}} = \sqrt 5 \cr 
& AC = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 \cr} \)

Vậy chu vi tam giác ABC bằng \(\sqrt 2  + \sqrt 3  + \sqrt 5 \).
Ta có \(B{C^2} = A{B^2} + A{C^2} \Rightarrow \Delta ABC \) vuông tại A nên có diện tích \(S = {1 \over 2}AB.AC = {{\sqrt 6 } \over 2}\)


LG c

Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A.

Giải chi tiết:

Gọi \({h_a}\) là độ dài đường cao kẻ từ A ta có: 
\({S_{ABC}} = {1 \over 2}BC.{h_a} \Rightarrow {h_a} = {{2{S_{ABC}}} \over {BC}} = {{\sqrt 6 } \over {\sqrt 5 }} = {{\sqrt {30} } \over 5}\)


LG d

Tính các góc của tam giác ABC.

Giải chi tiết:

Vì tam giác ABC vuông tại A nên:

\(\cos B = {{AB} \over {BC}} = {{\sqrt 2 } \over {\sqrt 5 }} = {{\sqrt {10} } \over 5}\,;\,\cos C = {{AC} \over {BC}} = {{\sqrt 3 } \over {\sqrt 5 }} = {{\sqrt {15} } \over 5}\)