Bài 9 trang 128 SGK Hình học 10 nâng cao

Xác định tọa độ tiêu điểm F và phương trình đường chuẩn d của (P)


Cho parabol (P) có phương trình y2 = 4x.

LG a

Xác định tọa độ tiêu điểm F  và phương trình đường chuẩn d của (P).

Giải chi tiết:

Ta có p = 2. Tọa độ tiêu điểm của (P) là F(1, 0).

Phương trình đường chuẩn  d: x + 1 = 0.


LG b

Đường thẳng Δ có phương trình \(y = m\,,\,\,(m \ne 0)\) lần lượt cắt d, Oy, (P) tại các điểm K, H, M. Tìm tọa độ của các điểm đó.

Giải chi tiết:

Ta có \(K( - 1;\,m)\,,\,\,H(0\,;\,m)\,,\,M\left( {{{{m^2}} \over 4}\,;\,m} \right)\) .


LG c

Gọi I là trung điểm của OH. Viết phương trình đường thẳng IM và chứng tỏ rằng đường thẳng  IM cắt (P) tại một điểm duy nhất.

Giải chi tiết:

I là trung điểm OH nên \(I\left( {0\,;\,{m \over 2}} \right)\)

Phương trình đường thẳng IM

\({{x - 0} \over {{{{m^2}} \over 4} - 0}} = {{y - {m \over 2}} \over {m - {m \over 2}}}\,\,\, \Leftrightarrow \,\,\,\,x = {m \over 2}\left( {y - {m \over 2}} \right)\)

\(\Leftrightarrow \,\,\,4x - 2my + {m^2} = 0\)

Tọa độ giao điểm của IM với (P)  là nghiệm của hệ

\(\eqalign{
& \left\{ \matrix{
{y^2} = 4x \hfill \cr 
4x - 2my + {m^2} = 0 \hfill \cr} \right. \Leftrightarrow \,\,\left\{ \matrix{
{y^2} = 4x \hfill \cr 
{y^2} - 2my + {m^2} = 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \,\,\left\{ \matrix{
{y^2} = 4x \hfill \cr 
{(y - m)^2} = 0 \hfill \cr} \right.\,\,\,\,\, \Leftrightarrow \,\,\,\,\left\{ \matrix{
x = {{{m^2}} \over 4} \hfill \cr 
y = m \hfill \cr} \right. \cr} \) 

Vậy IM cắt (P) tại một điểm duy nhất \(M\left( {{{{m^2}} \over 4}\,;\,m} \right)\)


LG d

Chứng minh rằng \(MI \bot KF\) . Từ đó suy ra IM là phân giác của góc KMF.

Giải chi tiết:

Ta có \(\overrightarrow {MI}  = \left( { - {{{m^2}} \over 4}\,;\, - {m \over 2}} \right)\,\,,\,\,\,\overrightarrow {KF}  = (2\,;\, - m)\) .

Suy ra  \(\overrightarrow {MI} .\,\overrightarrow {KF}  =  - {{{m^2}} \over 2} + {{{m^2}} \over 2} = 0\,\,\,\, \Rightarrow \,\,MI \bot KF\)

Tam giác \(KMF\) cân tại M  (do MF = MK).

MI là đường cao nên là phân giác góc KMF.

Bài giải tiếp theo