Bài 7 trang 40 SGK Toán 8 tập 2
Giải bài 7 trang 40 SGK Toán 8 tập 2. Số a là số âm hay dương nếu:
Số \(a\) là số âm hay dương nếu:
LG a.
\(12a < 15a\)?
Phương pháp giải:
Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm.
*) Với ba số \(a, b\) và \(c\) trong đó \(c > 0\), ta có:
Nếu \(a < b\) thì \(ac < bc\); nếu \(a ≤ b\) thì \(ac ≤ bc\);
Nếu \(a > b\) thì \(ac > bc\); nếu \(a ≥ b\) thì \(ac ≥ bc\).
*) Với ba số \(a, b\) và \(c\) trong đó \(c < 0\), ta có:
Nếu \(a < b\) thì \(ac > bc\); nếu \(a ≤ b\) thì \(ac ≥ bc\);
Nếu \(a > b\) thì \(ac < bc\); nếu \(a ≥ b\) thì \(ac ≤ bc\).
Lời giải chi tiết:
Ta có: \(12 < 15\). Để có bất đẳng thức
\(12a < 15a\) ta phải nhân cả hai vế của bất đẳng thức \(12 < 15\) với số \(a\).
Để được bất đẳng thức cùng chiều thì \(a > 0\).
LG b.
\(4a < 3a\)?
Phương pháp giải:
Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm.
*) Với ba số \(a, b\) và \(c\) trong đó \(c > 0\), ta có:
Nếu \(a < b\) thì \(ac < bc\); nếu \(a ≤ b\) thì \(ac ≤ bc\);
Nếu \(a > b\) thì \(ac > bc\); nếu \(a ≥ b\) thì \(ac ≥ bc\).
*) Với ba số \(a, b\) và \(c\) trong đó \(c < 0\), ta có:
Nếu \(a < b\) thì \(ac > bc\); nếu \(a ≤ b\) thì \(ac ≥ bc\);
Nếu \(a > b\) thì \(ac < bc\); nếu \(a ≥ b\) thì \(ac ≤ bc\).
Lời giải chi tiết:
Vì \(4 > 3\) và \(4a < 3a\) trái chiều. Để nhân hai vế của bất đẳng thức \(4 > 3\) với \(a\) được bất đẳng thức trái chiều thì \(a < 0\).
LG c.
\(-3a > -5a\).
Phương pháp giải:
Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm.
*) Với ba số \(a, b\) và \(c\) trong đó \(c > 0\), ta có:
Nếu \(a < b\) thì \(ac < bc\); nếu \(a ≤ b\) thì \(ac ≤ bc\);
Nếu \(a > b\) thì \(ac > bc\); nếu \(a ≥ b\) thì \(ac ≥ bc\).
*) Với ba số \(a, b\) và \(c\) trong đó \(c < 0\), ta có:
Nếu \(a < b\) thì \(ac > bc\); nếu \(a ≤ b\) thì \(ac ≥ bc\);
Nếu \(a > b\) thì \(ac < bc\); nếu \(a ≥ b\) thì \(ac ≤ bc\).
Lời giải chi tiết:
Từ \(-3 > -5\) để có \(-3a > -5a\) thì ta phải nhân cả hai vế của bất đẳng thức đó với số \(a>0\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 7 trang 40 SGK Toán 8 tập 2 timdapan.com"