Bài 49 trang 84 SGK Toán 8 tập 2
Giải bài 49 trang 84 SGK Toán 8 tập 2. Ở hình 51, tam giác ABC vuông tại A có đường cao AH
Ở hình 51, tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\)
LG a.
Trong hình vẽ có bao nhiêu cặp tam giác đồng dạng?
Phương pháp giải:
Áp dụng:
- Trường hợp đồng dạng: Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia.
Lời giải chi tiết:
Xét \(∆ABC \) và \( ∆HBA\) có:
\( \widehat{A} = \widehat{H}={90^o}\)
\( \widehat{B}\) chung
\(\Rightarrow ∆ABC ∽ ∆HBA\) (g-g)
Xét \(∆ABC \) và \( ∆HAC\) có:
\( \widehat{A} = \widehat{H}={90^o}\)
\( \widehat{C}\) chung
\(\Rightarrow ∆ABC ∽ ∆HAC\) (g-g)
LG b.
Cho biết: \(AB = 12,45 cm\), \(AC = 20,50cm\). Tính độ dài các đoạn \(BC, AH, BH\) và \(CH.\)
Phương pháp giải:
Áp dụng:
- Tính chất hai tam giác đồng dạng và định lý Pytago
Lời giải chi tiết:
\(∆ABC\) vuông tại \(A\) (giả thiết) nên áp dụng định lí Pitago ta có:
\(\eqalign{
& B{C^2} = A{B^2} + A{C^2} \cr
& \;\;\;\;\;\;\;\;= 12,{45^2} + 20,{50^2} = 575,2525 \cr
& \Rightarrow BC = \sqrt {575,2525} \approx 24\,cm \cr} \)
\( ∆ABC ∽ ∆HBA \) (chứng minh trên)
\( \Rightarrow \dfrac{AB}{HB} = \dfrac{BC}{BA}\)
\( \Rightarrow HB = \dfrac{AB^{2}}{BC} ≈ \dfrac{12,45^{2}}{24}≈ 6,5 cm\)
\( \Rightarrow CH = BC - BH \approx 24 - 6,5 \)\(\,= 17,5 cm.\)
Mặt khác: \( \dfrac{AC}{AH} = \dfrac{BC}{BA}\) (do \(∆ABC ∽ ∆HBA\) theo câu a)
\(\Rightarrow AH = \dfrac{AB.AC}{BC} \approx \dfrac{12,45.20,50}{24}\)
\( \Rightarrow AH \approx 10,6 cm\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 49 trang 84 SGK Toán 8 tập 2 timdapan.com"