Bài 45 trang 214 SGK Đại số 10 Nâng cao

Chứng minh rằng:


Chứng minh rằng:

LG a

\({{\sin \alpha  - \sin \beta } \over {\cos \alpha  - \cos \beta }} =  - \sqrt 3 \) nếu 

\(\left\{ \matrix{
\alpha + \beta = {\pi \over 3} \hfill \cr 
\cos \alpha \ne \cos \beta \hfill \cr} \right.\)

Giải chi tiết:

\(\eqalign{
& {{\sin \alpha - \sin \beta } \over {\cos \alpha - \cos \beta }} = {{2\cos {{\alpha + \beta } \over 2}\sin {{\alpha - \beta } \over 2}} \over { - 2\sin {{\alpha + \beta } \over 2}\sin {{\alpha - \beta } \over 2}}} \cr 
& = - \cot {{\alpha + \beta } \over 2} = - \cot {\pi \over 6} = - \sqrt 3 \cr} \)


LG b

\({{\cos \alpha  - \cos 7\alpha } \over {\sin 7\alpha  - sin\alpha }} = \tan 4\alpha \) (khi các biểu thức có nghĩa)

Giải chi tiết:

\({{\cos \alpha  - \cos 7\alpha } \over {\sin 7\alpha  - sin\alpha }} = {{2\sin 4\alpha \sin 3\alpha } \over {2\cos 4\alpha \sin 3\alpha }} = \tan 4\alpha \)