Bài 45 trang 214 SGK Đại số 10 Nâng cao
Chứng minh rằng:
Chứng minh rằng:
LG a
\({{\sin \alpha - \sin \beta } \over {\cos \alpha - \cos \beta }} = - \sqrt 3 \) nếu
\(\left\{ \matrix{
\alpha + \beta = {\pi \over 3} \hfill \cr
\cos \alpha \ne \cos \beta \hfill \cr} \right.\)
Giải chi tiết:
\(\eqalign{
& {{\sin \alpha - \sin \beta } \over {\cos \alpha - \cos \beta }} = {{2\cos {{\alpha + \beta } \over 2}\sin {{\alpha - \beta } \over 2}} \over { - 2\sin {{\alpha + \beta } \over 2}\sin {{\alpha - \beta } \over 2}}} \cr
& = - \cot {{\alpha + \beta } \over 2} = - \cot {\pi \over 6} = - \sqrt 3 \cr} \)
LG b
\({{\cos \alpha - \cos 7\alpha } \over {\sin 7\alpha - sin\alpha }} = \tan 4\alpha \) (khi các biểu thức có nghĩa)
Giải chi tiết:
\({{\cos \alpha - \cos 7\alpha } \over {\sin 7\alpha - sin\alpha }} = {{2\sin 4\alpha \sin 3\alpha } \over {2\cos 4\alpha \sin 3\alpha }} = \tan 4\alpha \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 45 trang 214 SGK Đại số 10 Nâng cao timdapan.com"