Bài 42 trang 62 SBT Hình học 12 Nâng cao

Giải bài 42 trang 62 sách bài tập Hình học 12 Nâng cao. Cho hình nón đỉnh S, đường cao SO...


Đề bài

Cho hình nón đỉnh S, đường cao SO. Gọi A và B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O dến AB bằng a và \(\widehat {SAO}\) = 300, \(\widehat {SAB}\) = 600. Tính diện tích xung quanh hình nón.

Lời giải chi tiết

Gọi \(I\) là trung điểm của AB thì \(OI \bot AB,SI \bot AB,OI = a.\) Ta có

\(AO = SA\cos \) \(\widehat {SAO} ={{\sqrt 3 } \over 2}SA.\)

\(AI = SA\cos \) \(\widehat {SAI} ={1 \over 2}SA.\)

Từ đó \({{AI} \over {AO}} = {1 \over {\sqrt 3 }}.\) Mặt khác \({{AI} \over {AO}} = \cos \widehat {IAO}\)

\( \Rightarrow \sin \widehat {IAO} ={{\sqrt 6 } \over 3} = {a \over {OA}}.\)

Vậy \(OA = {{3a} \over {\sqrt 6 }} = {{a\sqrt 6 } \over 2}.\)

Xét tam giác SAO, ta có \(SA = {{OA} \over {\cos {{30}^0}}} = {{a\sqrt 6 } \over 2}.{2 \over {\sqrt 3 }} = a\sqrt 2 .\)

Từ đó diện tích xung quanh của hình nón đã cho là

\({S_{xq}} = \pi .OA.SA = \pi .{{a\sqrt 6 } \over 2}.a\sqrt 2  = \pi {a^2}\sqrt 3 .\)



Từ khóa phổ biến