Bài 30 trang 32 Vở bài tập toán 9 tập 2
Giải bài 30 trang 32 VBT toán 9 tập 2. Giải các hệ phương trình sau...
Giải các hệ phương trình sau:
LG a
\(\left\{ \begin{array}{l}x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1\\\left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1\end{array} \right.\)
Phương pháp giải:
Sử dụng cách giải hệ phương trình bằng phương pháp thế
Lời giải chi tiết:
Nhân hai vế của phương trình thứ nhất với \(\sqrt 5 \) , ta được \(5.x - \sqrt 5 \left( {1 + \sqrt 3 } \right)y = \sqrt 5 \)
Nhân hai vế của phương trình thứ hai với \(\left( {1 + \sqrt 3 } \right)\), ta được \( - 2x + y\sqrt 5 \left( {1 + \sqrt 3 } \right) = \left( {1 + \sqrt 3 } \right)\)
Cộng từng vế của hai phương trình mới nhận được, ta có \(3x = 1 + \sqrt 5 + \sqrt 3 \) suy ra \(x = \dfrac{{1 + \sqrt 5 + \sqrt 3 }}{3}\)
Nhân hai vế của phương trình thứ nhất với \(1 - \sqrt 3 \) , ta được \(x\sqrt 5 \left( {1 - \sqrt 3 } \right) + 2y = 1 - \sqrt 3 \)
Nhân hai vế của phương trình thứ hai với \( - \sqrt 5 \) , ta được \( - \sqrt 5 \left( {1 - \sqrt 3 } \right)x - 5y = - \sqrt 5 \)
Cộng từng vế của hai phương trình mới nhận được, ta có \( - 3y = 1 - \sqrt 5 - \sqrt 3 \) suy ra \(x = \dfrac{{ - 1 + \sqrt 5 + \sqrt 3 }}{3}\)
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{\sqrt 5 + \sqrt 3 + 1}}{3};\dfrac{{\sqrt 5 + \sqrt 3 - 1}}{3}} \right)\)
LG b
\(\left\{ \begin{array}{l}\dfrac{{2x}}{{x + 1}} + \dfrac{y}{{y + 1}} = \sqrt 2 \\\dfrac{x}{{x + 1}} + \dfrac{{3y}}{{y + 1}} = - 1\end{array} \right.\)
Phương pháp giải:
Sử dụng cách giải hệ phương trình bằng phương pháp đặt ẩn phụ
Ta đặt \(u = \dfrac{x}{{x + 1}};\,v = \dfrac{y}{{y + 1}}\)
Lời giải chi tiết:
Với điều kiện \(x + 1 \ne 0\) và \(y + 1 \ne 0\) đặt \(u = \dfrac{x}{{x + 1}};\,v = \dfrac{y}{{y + 1}}\) ta được hệ phương trình
(I) \(\left\{ \begin{array}{l}2u + v = \sqrt 2 \\u + 3v = - 1\end{array} \right.\)
Giải (I):
\(\left\{ \begin{array}{l}2u + v = \sqrt 2 \\u + 3v = - 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2u + v = \sqrt 2 \\2u + 6v = - 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 5v = \sqrt 2 + 2\\u + 3v = - 1\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}v = - \dfrac{{2 + \sqrt 2 }}{5}\\u - 3.\dfrac{{2 + \sqrt 2 }}{5} = - 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}v = - \dfrac{{2 + \sqrt 2 }}{5}\\u - \dfrac{{6 + 3\sqrt 2 }}{5} = - 1\end{array} \right.\)
Do đó, hệ phương trình đã cho tương đương với hệ sau:
(II) \(\left\{ \begin{array}{l}\dfrac{x}{{x + 1}} = \dfrac{{1 + 3\sqrt 2 }}{5}\\\dfrac{y}{{y + 1}} = - \dfrac{{2 + \sqrt 2 }}{5}\end{array} \right.\)
Giải (II), ta được:
\( (II)\Leftrightarrow \left\{ \begin{array}{l}\dfrac{x}{{x + 1}} = \dfrac{{1 + 3\sqrt 2 }}{5}\\\dfrac{y}{{y + 1}} = - \dfrac{{2 + \sqrt 2 }}{5}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}5x = \left( {1 + 3\sqrt 2 } \right)x + 1 + 3\sqrt 2 \\5y = - \left( {2 + \sqrt 2 } \right)y - 2 - \sqrt 2 \end{array} \right.\)\( \\\Leftrightarrow \left\{ \begin{array}{l}\left( {4 - 3\sqrt 2 } \right)x = 1 + 3\sqrt 2 \\\left( {7 + \sqrt 2 } \right)y = - 2 - \sqrt 2 \end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{1 + 3\sqrt 2 }}{{4 - 3\sqrt 2 }}\\y = \dfrac{{ - 2 - \sqrt 2 }}{{7 + \sqrt 2 }}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{14 + 9\sqrt 2 }}{2}\\y = - \dfrac{{12 + 5\sqrt 2 }}{{47}}\end{array} \right.\,(tm)\)
Kết luận : Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{14 + 9\sqrt 2 }}{2}; - \dfrac{{12 + 5\sqrt 2 }}{{47}}} \right)\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 30 trang 32 Vở bài tập toán 9 tập 2 timdapan.com"