Bài 30 trang 206 SGK giải tích 12 nâng cao

Chứng minh rằng hiệu số acgumen của z’ với acgumen của z là một số đo của góc lượng giác


Gọi M, M’ là các điểm trong mặt phẳng phức theo thứ tự biểu diễn các số \(z = 3 + i;\) \(z' = \left( {3 - \sqrt 3 } \right) + \left( {1 + 3\sqrt 3 } \right)i.\)

LG a

Tính \({{z'} \over z};\)

Phương pháp giải:

Sử dụng công thức chia hai số phức:

\(\dfrac{{a + bi}}{{c + di}} = \dfrac{{\left( {a + bi} \right)\left( {c - di} \right)}}{{{c^2} + {d^2}}}\)

Lời giải chi tiết:

\(\frac{{z'}}{z} = \frac{{3 - \sqrt 3  + \left( {1 + 3\sqrt 3 } \right)i}}{{3 + i}}\) \(= {{\left[ {3 - \sqrt 3  + \left( {1 + 3\sqrt 3 } \right)i} \right]\left( {3 - i} \right)} \over {3^2+1^2}}\) \( = \frac{{9 - 3\sqrt 3  + 1 + 3\sqrt 3  + \left( {3 + 9\sqrt 3  - 3 + \sqrt 3 } \right)i}}{{10}} \) \(= \frac{{10 + 10\sqrt 3 i}}{{10}}\) \( = 1 +  \sqrt 3 i\)


LG b

Chứng minh rằng hiệu số acgumen của z’ với acgumen của z là một số đo của góc lượng giác \(\left( {OM,OM'} \right)\). Tính số đo đó.

Phương pháp giải:

Dựng hình, suy ra kết luận từ hình vẽ.

Lời giải chi tiết:

Xét tia Ox thì ta có: \(sđ\left( {OM,OM'} \right) \) \(= sđ\left( {Ox,OM'} \right) - sđ\left( {Ox,OM} \right)\) \( = \varphi ' - \varphi  = acgumen{{z'} \over z}\) (sai khác \(k2\pi \))

(trong đó \(\varphi \) và \(\varphi '\) theo thứ tự là acgumen của z và z’).

Từ đó do \({{z'} \over z} = 1 + \sqrt 3 i\) có acgumen là \({\pi  \over 3} + k2\pi \,\,\left( {k \in Z} \right)\), nên góc lượng giác \(\left( {OM,OM'} \right)\) có số đo \({\pi  \over 3} + k2\pi \,\,\left( {k \in\mathbb Z} \right)\)

Cách khác:

Từ (1) và (2) ta có:

cos(α'-α)=cos(OM,OM')

nên kí hiệu α'-α là một số đo của góc lượng giác (OM, OM’) và số đo là \(\alpha ' - \alpha  = \frac{\pi }{3} + k2\pi \).

 



Bài học liên quan

Từ khóa phổ biến