Bài 3 trang 71 SGK Đại số 10 nâng cao
Giải các phương trình sau:
Giải các phương trình sau:
LG a
\(x + {1 \over {x - 1}} = {{2x - 1} \over {x - 1}}\)
Giải chi tiết:
ĐKXĐ: \(x ≠ 1\)
Ta có:
\(\eqalign{
& x + {1 \over {x - 1}} = {{2x - 1} \over {x - 1}} \Leftrightarrow x(x - 1) + 1 = 2x - 1 \cr
& \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow \left[ \matrix{
x = 1\,(\text{loại}) \hfill \cr
x = 2 \hfill \cr} \right. \cr} \)
Vậy S = {2}
LG b
\(x + {1 \over {x - 2}} = {{2x - 3} \over {x - 2}}\)
Giải chi tiết:
ĐKXĐ: \(x ≠ 2\)
Ta có:
\(\eqalign{
& x + {1 \over {x - 2}} = {{2x - 3} \over {x - 2}} \Leftrightarrow {x^2} - 2x + 1 = 2x - 3 \cr
& \Leftrightarrow {x^2} - 4x + 4 = 0 \Leftrightarrow {(x - 2)^2} = 0 \cr
& \Leftrightarrow x = 2\,(\text{loại}) \cr} \)
Vậy S = Ø
LG c
\(({x^2} - 3x + 2)\sqrt {x - 3} = 0\)
Giải chi tiết:
ĐKXĐ: \(x ≥ 3\)
Ta có:
\(\eqalign{
& ({x^2} - 3x + 2)\sqrt {x - 3} = 0 \Leftrightarrow \left[ \matrix{
\sqrt {x - 3} = 0 \hfill \cr
{x^2} - 3x + 2 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 3 \hfill \cr
x = 1\,(\text{loại}) \hfill \cr
x = 2\,(\text{loại}) \hfill \cr} \right. \cr} \)
Vậy S = {3}
LG d
\(({x^2} - x - 2)\sqrt {x + 1} = 0\)
Giải chi tiết:
ĐKXĐ: \(x ≥ -1\)
Ta có:
\(({x^2} - x - 2)\sqrt {x + 1} = 0 \Leftrightarrow \left[ \matrix{
\sqrt {x + 1} = 0 \hfill \cr
{x^2} - x - 2 = 0 \hfill \cr} \right.\)
\(\Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr
x = 2 \hfill \cr} \right.\)
Vậy S = {-1, 2}
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 3 trang 71 SGK Đại số 10 nâng cao timdapan.com"