Bài 18 trang 200 SGK Đại số 10 Nâng cao

Tính giá trị lượng giác của góc α trong mỗi trường hợp sau:


Tính giá trị lượng giác của góc α trong mỗi trường hợp sau:

LG a

\(\cos \alpha  = {1 \over 4};\,\,\sin \alpha  < 0\)

Giải chi tiết:

Ta có:

\(\eqalign{
& \sin \alpha = - \sqrt {1 - {{\cos }^2}\alpha } = - \sqrt {1 - {1 \over {16}}} = - {{\sqrt {15} } \over 4} \cr 
& \tan \alpha = {{\sin \alpha } \over {\cos \alpha }} = - \sqrt {15} \cr 
& \cot \alpha = {1 \over {\tan \alpha }} = - {{\sqrt {15} } \over 5} \cr} \)


LG b

\(\sin  =  - {1 \over 3};\,{\pi  \over 2} < \alpha  < {{3\pi } \over 2}\)

Giải chi tiết:

Ta có:

\(\eqalign{
& \,{\pi \over 2} < \alpha < {{3\pi } \over 2} \Rightarrow \cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - {{2\sqrt 2 } \over 3} \cr 
& \tan \alpha = {{\sin \alpha } \over {\cos \alpha }} = {1 \over {2\sqrt 2 }} = {{\sqrt 2 } \over 4} \cr 
& \cot \alpha = 2\sqrt 2 \cr} \)


LG c

\(\tan \alpha  = {1 \over 2};\, - \pi  < \alpha  < 0\)

Giải chi tiết:

Ta có:

\(\eqalign{
& \left\{ \matrix{
- \pi < \alpha < 0 \hfill \cr 
\tan \alpha = {1 \over 2} \hfill \cr} \right. \Rightarrow \cos \alpha < 0\cr& \Rightarrow \cos \alpha = - {1 \over {\sqrt {1 + {{\tan }^2}\alpha } }} = - {{2\sqrt 5 } \over 5} \cr 
& \sin \alpha = \tan \alpha .\cot \alpha = - {{\sqrt 5 } \over 5} \cr 
& \cot \alpha = {1 \over {\tan \alpha }} = 2 \cr} \)