Bài 14 trang 47 SGK Đại số 10 nâng cao

Tập con S của tập số thực gọi là đối xứng nếu mọi x thuộc S, ta đều có – x thuộc S. Em có nhận xét gì về tập xác định của một hàm số chẵn (lẻ).


Đề bài

Tập con S của tập số thực \(\mathbb R\) gọi là đối xứng nếu mọi x thuộc S, ta đều có – x thuộc S. Em có nhận xét gì về tập xác định của một hàm số chẵn (lẻ).

Từ nhận xét đó, em có kết luận gì về tính chẵn – lẻ của hàm số \(y = \sqrt x \) ? Tại sao?

Lời giải chi tiết

Tập xác định của một hàm số chẵn (lẻ) là tập đối xứng.

Hàm số \(y = \sqrt x \) không là hàm số chẵn, cũng không là hàm số lẻ vì tập xác định của nó là \(D = [0; +∞)\) không phải là tập đối xứng (do 1 ∈ D nhưng -1 ∉ D).