Bài tập cuối chương 2 - Toán 12 Chân trời sáng tạo
Giải bài tập 1 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho điểm M thoả mãn \[\overrightarrow {OM} = 2\overrightarrow i + \overrightarrow j \]. Toạ độ của điểm M là
A. M(0; 2; 1). B. M(1; 2; 0). C. M(2; 0; 1). D. M(2; 1; 0).
Giải bài tập 2 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho hai điểm A(–1; 2; –3) và B(2; –1; 0). Toạ độ của vectơ \(\overrightarrow {AB} \) là
A. \(\overrightarrow {AB} \)¬¬ = (1; –1; 1). B. \(\overrightarrow {AB} \)= (3; 3; –3). C. \(\overrightarrow {AB} \)= (1; 1; –3). D. \(\overrightarrow {AB} \)= (3; –3; 3).
Giải bài tập 3 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho hai điểm A(3; –2; 3) và B(–1; 2; 5). Toạ độ trung điểm I của đoạn thẳng AB là
A. I(–2; 2; 1). B. I(1; 0; 4). C. I(2; 0; 8). D. I(2; –2; –1)
Giải bài tập 4 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho ba điểm A(1; 3; 5), B(2; 0; 1), C(0; 9; 0). Toạ độ trọng tâm G của tam giác ABC là
A. G(3; 12; 6). B. G(1; 5; 2). C. G(1; 0; 5). D. G(1; 4; 2).
Giải bài tập 5 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho A(1; 2; –1), B(2; 1; –3), C(–3; 5; 1). Điểm D sao cho ABCD là hình bình hành có toạ độ là
A. D(–4; 6; 3). B. D(–2; 2; 5). C. D(–2; 8; –3). D. D(–4; 6; –5)
Giải bài tập 6 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Gọi a là góc giữa hai vectơ \(\overrightarrow u = (0; - 1;0)\) và \(\overrightarrow v = (\sqrt 3 ;1;0)\). Giá trị của \(\alpha \) là
A. \(\alpha = \frac{\pi }{6}\). B. \(\alpha = \frac{\pi }{3}\). C. \(\alpha = \frac{{2\pi }}{3}\). D. \(\alpha = \frac{\pi }{2}\).
Giải bài tập 7 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho A(2; –1; 1), B(–1; 3; –1), C(5; –3; 4). Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {BC} \) có giá trị là
A. 48. B. –48. C. 52. D. –52.
Giải bài tập 8 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho hai điểm A(–1; 2; 3), B = (1; 0; 2). Toạ độ điểm M thoả mãn \(\overrightarrow {AB} = 2\overrightarrow {MA} \) là
A. \(M( - 2;3;\frac{7}{2})\) B. \(M( - 2; - 3;\frac{7}{2})\) C. \(M( - 2;3;7)\). D. \(M( - 4;6;7)\).
Giải bài tập 9 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Trong không gian Oxyz, cho hình hộp chữ nhật OABC.O′A′B′C′ như Hình 1, biết B′(2; 3; 5).
a) Tìm toạ độ các đỉnh còn lại của hình hộp.
b) Tính độ dài đường chéo OB′ của hình hộp chữ nhật đó.
Giải bài tập 10 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Tìm toạ độ của điểm P được biểu diễn trong Hình 2 và tính khoảng cách OP.
Giải bài tập 11 trang 66 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho \(\overrightarrow u = (2; - 5;3),\overrightarrow v = (0;2; - 1),\overrightarrow w = (1;7;2)\). Tìm toạ độ của vectơ \(\overrightarrow a = \overrightarrow u - 4\overrightarrow v - 2\overrightarrow w \).
Giải bài tập 12 trang 66 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho ba điểm A(0; 1; 2), B(1; 2; 3), C(1; –2; –5). Gọi M là điểm nằm trên đoạn thẳng BC sao cho MB = 3MC. Tính độ dài đoạn thẳng AM
Giải bài tập 13 trang 66 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho hai vectơ (overrightarrow u ) và (overrightarrow v ) tạo với nhau góc (60^circ ). Biết rằng (|overrightarrow u | = 2) và (|overrightarrow v | = 4). Tính (|overrightarrow u + overrightarrow v |)
Giải bài tập 14 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho hai điểm A(1; 2; –1), B(0; –2; 3).
a) Tính độ dài đường cao AH hạ từ đỉnh A của tam giác OAB với O là gốc toạ độ.
b) Tính diện tích tam giác OAB.
Giải bài tập 15 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho biết máy bay A đang bay với vectơ vận tốc \(\overrightarrow a = (300;200;400)\)(đơn vị: km/h). Máy bay B bay cùng hướng và có tốc độ gấp ba lần tốc độ của máy bay A.
a) Tìm toạ độ vectơ vận tốc \(\overrightarrow b \) của máy bay B.
b) Tính tốc độ của máy bay B.
Giải bài tập 16 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho biết bốn đoạn thẳng nối từ một đỉnh của tứ diện đến trọng tâm mặt đối diện luôn cắt nhau tại một điểm gọi là trọng tâm của tứ diện đó.
Một phân tử metan CH4 được cấu tạo bởi bốn nguyên tử hydrogen ở các đỉnh của một tứ diện đều và một nguyên tử carbon ở trọng tâm của tứ diện.
Góc liên kết là góc tạo bởi liên kết H–C–H là góc giữa các đường nối nguyên tử carbon với hai trong số các nguyên tử hydrogen. Chứng minh rằng góc liên kết này gần bằng \(109,5^\circ \)