Ôn tập chương 2 Hàm số lũy thừa, Hàm số mũ và Hàm số Lôgarit
Video bài giảng
1. Công thức mũ và lũy thừa
Cho a và b > 0, m và n là những số thực tùy ý, ta có các công thức mũ và lũy thừa sau:
2. Công thức lôgarit
Cho \(a<0\ne1,b>0\) và \(x,y>0,\) ta có các công thức sau:
Công thức đổi cơ số:
3. Đạo hàm của hàm số lũy thừa, hàm số mũ và hàm số lôgarit
4. Hàm số lũy thừa, hàm số mũ, hàm số lôgarit
a) Hàm số lũy thừa
Bảng tóm tắt các tính chất của hàm số lũy thừa \(y=x^{\alpha}\) trên khoảng \(\left( {0; + \infty } \right)\)
b) Hàm số mũ
Bảng tóm tắt các tính chất của hàm số mũ \(y=a^x(a>0,a\ne1)\)
c) Hàm số lôgarit
Bảng tóm tắt các tính chất của hàm số lôgarit \(y={\log_a}x(a>0,a\ne1)\)
5. Phương trình và bất phương trình mũ
Các phương pháp giải:
- Phương pháp đưa về cùng cơ số.
- Phương pháp lôgarit hóa.
- Phương pháp đặt ẩn phụ.
- Phương pháp hàm số.
6. Phương trình và bất phương trình lôgarit
Các phương pháp giải:
- Phương pháp đưa về cùng cơ số
- Phương pháp mũ hóa.
- Phương pháp đặt ẩn phụ.
- Phương pháp hàm số.
7. Bài tập minh họa
Bài tập 1:
Cho a, b, c > 0; a, b, c\(\neq\)1 thỏa mãn ac = b2. CMR: \(\log_ab+\log_cb=2\log_ab.\log_cb.\)
Lời giải:
\(ac=b^2\Rightarrow \log_b\ a+\log_b\ c=2\)\(\Rightarrow \frac{1}{\log_a \ b}+\frac{1}{\log_c \ b}=2\)
\(\Rightarrow \frac{\log_c \ b +\log_a \ b}{\log_a \ b .\log_c \ b}=2\)\(\Rightarrow \log_c \ b +\log_a \ b = 2\log_a \ b . \log_c \ b\).
Bài tập 2:
Cho \(\log_{3}5=a\). Tính \(\log_{75}45\) theo a.
Lời giải:
\(\log_{75}45=\frac{\log_{3}45}{\log_{3}75}=\frac{\log_{3}(3^{2}.5)}{\log_{3}(3.5^{2})}\)\(=\frac{log_{3}3^{2}+log_{3}5}{log_{3}3+log_{3}5^{2}}=\frac{2+log_{3}5}{1+2log_{3}5}\)\(=\frac{2+a}{1+2a}\).
Bài tập 3:
Lời giải:
Để T = 2A thì phải có \((1,068)^n=2 \ \ (hay \ (1+6,8\%)^n=2)\)
\(\Leftrightarrow n=log_{1,068}.2\approx 10,54\)
Vậy muốn thu được gấp đôi số tiền ban đầu, người đó phải gửi 11 năm.
Bài tập 4:
Lời giải:
x > 0\\
{\log _8}\frac{8}{{{x^2}}} \ge 0
\end{array} \right. \Leftrightarrow 0 < x < 2\sqrt 2 .\)
\(\Leftrightarrow 3\log_8^2x+2\log_8x^2-1=0\)
Đặt \(t=\log_8x\), phương trình trở thành: \(3{t^2} + 2t - 1 = 0 \Leftrightarrow \left[ \begin{array}{l} t = - 1\\ t = \frac{1}{3} \end{array} \right.\)
Với: \(t=-1\Leftrightarrow log_8x=-1\Leftrightarrow x=\frac{1}{8}\)
Với: \(t=\frac{1}{3}\Leftrightarrow log_8x=\frac{1}{3}\Leftrightarrow x=2\)
Vậy tập nghiệm phương trình là: \(\left \{ \frac{1}{8};2 \right \}\).
Bài tập 5:
Lời giải:
Khi đó ta có:
\(\log_{0,5}x+2\log_{0,25}(x-1)+\log_26\geq 0\)
\(\Leftrightarrow \log_2x-\log_2(x-1)+\log_26\geq 0\)
\(\Leftrightarrow \log_2[x(x-1)]\leq \log_26\Leftrightarrow x(x-1)\leq 6\Leftrightarrow x^2-x-6\leq 0\)
\(\Leftrightarrow -2\leq x\leq 3\).
Kết hợp điều kiện (*) ta được \(1 < x \le 3\)
Bài tập 6:
Lời giải:
Đặt: \(t=27^x(t>0)\) ta được \(t^2-4t-45=0\)\(\Leftrightarrow t=9\) (Do t>0).
\(\Rightarrow 3^{3x}=3^2\Leftrightarrow 3x=2\Leftrightarrow x=\frac{2}{3}\).
Vậy phương trình đã cho có nghiệm là \(x=\frac{2}{3}\).
Bài tập 7:
Lời giải:
\(4^x-3^x>1\Leftrightarrow 4^x>3^x+1\)\(\Leftrightarrow 1>(\frac{3}{4})^x+(\frac{1}{4})^x\)
Với \(x\leq 1\) ta có: \(\left.\begin{matrix} \left ( \frac{3}{4} \right )^x\geqslant \frac{3}{4}\\ \\ \left ( \frac{1}{4} \right )^x\geqslant \frac{1}{4} \end{matrix}\right\}VP\geqslant 1\) Không thỏa mãn.
Với \(x>1\) ta có: \(\left.\begin{matrix} (\frac{3}{4})^x<\frac{3}{4}\\ \\ (\frac{1}{4})^x< \frac{1}{4} \end{matrix}\right\}VP< 1\) thỏa mãn.
Vậy bất phương trình có tập nghiệm là: \(S=(1;+\infty ).\)
1. Công thức mũ và lũy thừa
Cho a và b > 0, m và n là những số thực tùy ý, ta có các công thức mũ và lũy thừa sau:
2. Công thức lôgarit
Cho \(a<0\ne1,b>0\) và \(x,y>0,\) ta có các công thức sau:
Công thức đổi cơ số:
3. Đạo hàm của hàm số lũy thừa, hàm số mũ và hàm số lôgarit
4. Hàm số lũy thừa, hàm số mũ, hàm số lôgarit
a) Hàm số lũy thừa
Bảng tóm tắt các tính chất của hàm số lũy thừa \(y=x^{\alpha}\) trên khoảng \(\left( {0; + \infty } \right)\)
b) Hàm số mũ
Bảng tóm tắt các tính chất của hàm số mũ \(y=a^x(a>0,a\ne1)\)
c) Hàm số lôgarit
Bảng tóm tắt các tính chất của hàm số lôgarit \(y={\log_a}x(a>0,a\ne1)\)
5. Phương trình và bất phương trình mũ
Các phương pháp giải:
- Phương pháp đưa về cùng cơ số.
- Phương pháp lôgarit hóa.
- Phương pháp đặt ẩn phụ.
- Phương pháp hàm số.
6. Phương trình và bất phương trình lôgarit
Các phương pháp giải:
- Phương pháp đưa về cùng cơ số
- Phương pháp mũ hóa.
- Phương pháp đặt ẩn phụ.
- Phương pháp hàm số.
7. Bài tập minh họa
Bài tập 1:
Cho a, b, c > 0; a, b, c\(\neq\)1 thỏa mãn ac = b2. CMR: \(\log_ab+\log_cb=2\log_ab.\log_cb.\)
Lời giải:
\(ac=b^2\Rightarrow \log_b\ a+\log_b\ c=2\)\(\Rightarrow \frac{1}{\log_a \ b}+\frac{1}{\log_c \ b}=2\)
\(\Rightarrow \frac{\log_c \ b +\log_a \ b}{\log_a \ b .\log_c \ b}=2\)\(\Rightarrow \log_c \ b +\log_a \ b = 2\log_a \ b . \log_c \ b\).
Bài tập 2:
Cho \(\log_{3}5=a\). Tính \(\log_{75}45\) theo a.
Lời giải:
\(\log_{75}45=\frac{\log_{3}45}{\log_{3}75}=\frac{\log_{3}(3^{2}.5)}{\log_{3}(3.5^{2})}\)\(=\frac{log_{3}3^{2}+log_{3}5}{log_{3}3+log_{3}5^{2}}=\frac{2+log_{3}5}{1+2log_{3}5}\)\(=\frac{2+a}{1+2a}\).
Bài tập 3:
Lời giải:
Để T = 2A thì phải có \((1,068)^n=2 \ \ (hay \ (1+6,8\%)^n=2)\)
\(\Leftrightarrow n=log_{1,068}.2\approx 10,54\)
Vậy muốn thu được gấp đôi số tiền ban đầu, người đó phải gửi 11 năm.
Bài tập 4:
Lời giải:
x > 0\\
{\log _8}\frac{8}{{{x^2}}} \ge 0
\end{array} \right. \Leftrightarrow 0 < x < 2\sqrt 2 .\)
\(\Leftrightarrow 3\log_8^2x+2\log_8x^2-1=0\)
Đặt \(t=\log_8x\), phương trình trở thành: \(3{t^2} + 2t - 1 = 0 \Leftrightarrow \left[ \begin{array}{l} t = - 1\\ t = \frac{1}{3} \end{array} \right.\)
Với: \(t=-1\Leftrightarrow log_8x=-1\Leftrightarrow x=\frac{1}{8}\)
Với: \(t=\frac{1}{3}\Leftrightarrow log_8x=\frac{1}{3}\Leftrightarrow x=2\)
Vậy tập nghiệm phương trình là: \(\left \{ \frac{1}{8};2 \right \}\).
Bài tập 5:
Lời giải:
Khi đó ta có:
\(\log_{0,5}x+2\log_{0,25}(x-1)+\log_26\geq 0\)
\(\Leftrightarrow \log_2x-\log_2(x-1)+\log_26\geq 0\)
\(\Leftrightarrow \log_2[x(x-1)]\leq \log_26\Leftrightarrow x(x-1)\leq 6\Leftrightarrow x^2-x-6\leq 0\)
\(\Leftrightarrow -2\leq x\leq 3\).
Kết hợp điều kiện (*) ta được \(1 < x \le 3\)
Bài tập 6:
Lời giải:
Đặt: \(t=27^x(t>0)\) ta được \(t^2-4t-45=0\)\(\Leftrightarrow t=9\) (Do t>0).
\(\Rightarrow 3^{3x}=3^2\Leftrightarrow 3x=2\Leftrightarrow x=\frac{2}{3}\).
Vậy phương trình đã cho có nghiệm là \(x=\frac{2}{3}\).
Bài tập 7:
Lời giải:
\(4^x-3^x>1\Leftrightarrow 4^x>3^x+1\)\(\Leftrightarrow 1>(\frac{3}{4})^x+(\frac{1}{4})^x\)
Với \(x\leq 1\) ta có: \(\left.\begin{matrix} \left ( \frac{3}{4} \right )^x\geqslant \frac{3}{4}\\ \\ \left ( \frac{1}{4} \right )^x\geqslant \frac{1}{4} \end{matrix}\right\}VP\geqslant 1\) Không thỏa mãn.
Với \(x>1\) ta có: \(\left.\begin{matrix} (\frac{3}{4})^x<\frac{3}{4}\\ \\ (\frac{1}{4})^x< \frac{1}{4} \end{matrix}\right\}VP< 1\) thỏa mãn.
Vậy bất phương trình có tập nghiệm là: \(S=(1;+\infty ).\)