Lý thuyết tập hợp Q các số hữu tỉ
Mỗi số hữu tỉ được biểu diễn bởi một điểm trên trục số và không phụ thuộc vào cách chọn phân số xác định nó
1. Số hữu tỉ
Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b ∈ \mathbb Z, b \ne 0\) và được kí hiệu là \(\mathbb Q\)
2. Biểu diễn số hữu tỉ trên trục số
Mỗi số hữu tỉ được biểu diễn bởi một điểm trên trục số và không phụ thuộc vào cách chọn phân số xác định nó.
3. So sánh số hữu tỉ
Để so sánh hai số hữu tỉ \(x,y\) ta làm như sau:
- Viết \(x,y\) dưới dạng phân số cùng mẫu dương.
\(x = \dfrac{a}{m} ; y = \dfrac{b}{m} ( m>0)\)
- So sánh các tử là số nguyên \(a\) và \(b\)
Nếu \(a> b\) thì \(x > y\)
Nếu \(a = b\) thì \(x=y\)
Nếu \(a < b\) thì \(x < y\).
4. Chú ý
- Số hữu tỉ lớn hơn \(0\) gọi là số hữu tỉ dương
- Số hữu tỉ nhỏ hơn \(0\) gọi là số hữu tỉ âm
- Số \(0\) không là số hữu tỉ dương, cũng không là số hữu tỉ âm
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Lý thuyết tập hợp Q các số hữu tỉ timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Lý thuyết tập hợp Q các số hữu tỉ timdapan.com"