Lý thuyết Số nguyên tố. Hợp số Toán 6 Cánh diều
Lý thuyết Số nguyên tố. Hợp số Toán 6 Cánh diều ngắn gọn, đầy đủ, dễ hiểu
Số nguyên tố
- Số nguyên tố là số tự nhiên lớn hơn \(1,\) chỉ có \(2\) ước là \(1\) và chính nó.
Ví dụ : Ư\((13) = \{ 13;1\} \) nên \(13\) là số nguyên tố.
Nhận xét:
* Cách kiểm tra 1 số là số nguyên tố: Để kết luận số a là số nguyên tố \(\left( {a > 1} \right),\)
Bước 1: Tìm số nguyên tố lớn nhất \(b\) mà \({b^2} < a\).
Bước 2: Lấy \(a\) chia cho các số nguyên tố từ 2 đến số nguyên tố \(b\), nếu \(a\) không chia hết cho số nào thì \(a\) là số nguyên tố.
Hợp số
Hợp số là số tự nhiên lớn hơn \(1,\) có nhiều hơn \(2\) ước.
Ví dụ: số \(15\) có \(4\) ước là \(1;3;5;15\) nên \(15\) là hợp số.
Lưu ý:
+) Số 0 và số 1 không là số nguyên tố cũng không là hợp số.
+) Kiểm tra một số là hợp số: Sử dụng dấu hiệu chia hết để tìm một ước khác 1 và chính nó.
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Lý thuyết Số nguyên tố. Hợp số Toán 6 Cánh diều timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Lý thuyết Số nguyên tố. Hợp số Toán 6 Cánh diều timdapan.com"