Giải mục 4 trang 46, 47 Chuyên đề học tập Toán 10 - Chân trời sáng tạo
Cho điểm \(M(x;y)\) trên elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)và hai đường thẳng \({\Delta _1}:x + \frac{a}{e} = 0\) và \({\Delta _2}:x - \frac{a}{e} = 0\) (Hình 10). Gọi \(d(M,{\Delta _1});d(M,{\Delta _2})\) lần lượt là khoảng cách từ M đến \({\Delta _1},{\Delta _2}.\) Ta có \(d(M,{\Delta _1}) = \left| {x + \frac{a}{e}} \right| = \frac{{\left| {a + ex} \right|}}{e} = \frac{{a + ex}}{e}\) (vì \(e > 0\) và \(a + ex = M{F_1} > 0\)).
HĐ4
Cho điểm \(M(x;y)\) trên elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)và hai đường thẳng \({\Delta _1}:x + \frac{a}{e} = 0\) và \({\Delta _2}:x - \frac{a}{e} = 0\) (Hình 10). Gọi \(d(M,{\Delta _1});d(M,{\Delta _2})\) lần lượt là khoảng cách từ M đến \({\Delta _1},{\Delta _2}.\) Ta có \(d(M,{\Delta _1}) = \left| {x + \frac{a}{e}} \right| = \frac{{\left| {a + ex} \right|}}{e} = \frac{{a + ex}}{e}\) (vì \(e > 0\) và \(a + ex = M{F_1} > 0\)).
Suy ra \(\frac{{M{F_1}}}{{d(M,{\Delta _1})}} = \frac{{a + ex}}{{\frac{{a + ex}}{e}}} = e\)
Dựa theo cách tính trên, hãy tính \(\frac{{M{F_2}}}{{d(M,{\Delta _2})}}\)
Lời giải chi tiết:
Ta có: \(d(M,{\Delta _2}) = \left| {x - \frac{a}{e}} \right| = \frac{{\left| {a - ex} \right|}}{e} = \frac{{a - ex}}{e}\) (vì \(e > 0\) và \(a - ex = M{F_2} > 0\)).
Suy ra \(\frac{{M{F_2}}}{{d(M,{\Delta _2})}} = \frac{{a - ex}}{{\frac{{a - ex}}{e}}} = e\)
Thực hành 4
Tìm tọa độ hai tiêu điểm và viết phương trình hai đường chuẩn tương ứng của các elip sau:
a) \(({E_1}):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\)
b) \(({E_2}):\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)
Phương pháp giải:
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).
+ Ứng với tiêu điểm \({F_1}( - c;0)\), có đường chuẩn \({\Delta _1}:x + \frac{a}{e} = 0\)
+ Ứng với tiêu điểm \({F_2}(c;0)\), có đường chuẩn \({\Delta _2}:x - \frac{a}{e} = 0\)
Lời giải chi tiết:
a) Elip \(({E_1})\) có \(a = 2,b = 1\), suy ra \(c = \sqrt {{a^2} - {b^2}} = \sqrt 3 ,e = \frac{c}{a} = \frac{{\sqrt 3 }}{2}.\)
+ Ứng với tiêu điểm \({F_1}( - \sqrt 3 ;0)\), có đường chuẩn \({\Delta _1}:x + \frac{{4\sqrt 3 }}{3} = 0\)
+ Ứng với tiêu điểm \({F_2}\left( {\sqrt 3 ;0} \right)\), có đường chuẩn \({\Delta _2}:x - \frac{{4\sqrt 3 }}{3} = 0\)
b) Elip \(({E_2})\) có \(a = 10,b = 6\), suy ra \(c = \sqrt {{a^2} - {b^2}} = 8,e = \frac{c}{a} = \frac{4}{5}.\)
+ Ứng với tiêu điểm \({F_1}( - 8;0)\), có đường chuẩn \({\Delta _1}:x + \frac{{25}}{2} = 0\)
+ Ứng với tiêu điểm \({F_2}\left( {8;0} \right)\), có đường chuẩn \({\Delta _2}:x - \frac{{25}}{2} = 0\)
Vận dụng 4
Lập phương trình chính tắc của elip có tiêu cự bằng 6 và khoảng cách giữa hai đường chuẩn là \(\frac{{50}}{3}\).
Phương pháp giải:
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).
+ Tiêu cự: \(2c = 2\sqrt {{a^2} - {b^2}} \)
+ Khoảng cách giữa hai đường chuẩn là: \(\frac{{2a}}{e}\)
Lời giải chi tiết:
< b < a)\)
+ Tiêu cự: \(2c = 6 \Leftrightarrow c = 3\)
+ Khoảng cách giữa hai đường chuẩn là: \(\frac{{2a}}{e} = 2.\frac{{{a^2}}}{c} = \frac{{50}}{3} \Rightarrow {a^2} = 100\)
Hay \(a = 10\), suy ra \({b^2} = {a^2} - {c^2} = 91\)
Vậy elip cần tìm là \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{91}} = 1\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải mục 4 trang 46, 47 Chuyên đề học tập Toán 10 - Chân trời sáng tạo timdapan.com"