Bài 1. Elip Chuyên đề học tập Toán 10 chân trời sáng tạo


Giải mục 1 trang 42, 43 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

Cho elip (E) có phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\) và cho điểm \(M({x_0};{y_0})\) nằm trên (E).

Giải mục 2 trang 44 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

Cho điểm \(M(x;y)\)nằm trên elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) có hai tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\) (Hình 6).

Giải mục 3 trang 45, 46 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

Cho biết tỉ số \(e = \frac{c}{a}\) của các elip lần lượt là \(\frac{3}{4},\frac{1}{2},\frac{1}{4}\)(Hình 8). Tính tỉ số \(\frac{b}{a}\) theo \(e\) và nêu nhận xét về sự thay đổi của hình dạng elip gắn với hình chữ nhật cơ sở khi \(e\) thay đổi.

Giải mục 4 trang 46, 47 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

Cho điểm \(M(x;y)\) trên elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)và hai đường thẳng \({\Delta _1}:x + \frac{a}{e} = 0\) và \({\Delta _2}:x - \frac{a}{e} = 0\) (Hình 10). Gọi \(d(M,{\Delta _1});d(M,{\Delta _2})\) lần lượt là khoảng cách từ M đến \({\Delta _1},{\Delta _2}.\) Ta có \(d(M,{\Delta _1}) = \left| {x + \frac{a}{e}} \right| = \frac{{\left| {a + ex} \right|}}{e} = \frac{{a + ex}}{e}\) (vì \(e > 0\) và \(a + ex = M{F_1} > 0\)).


Giải bài 2 trang 48 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Tìm các điểm trên elip (E): (frac{{{x^2}}}{{{a^2}}} + frac{{{y^2}}}{{{b^2}}} = 1) có độ dài hai bán kính qua tiêu nhỏ nhất, lớn nhất.

Giải bài 3 trang 48 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Lập phương trình chính tắc của elip có tiêu cự bằng 12 và khoảng cách giữa hai đường chuẩn là (frac{{169}}{6})


Giải bài 5 trang 48 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Trái Đất chuyển động theo một quỹ đạo là đường elip có tâm sai là 0,0167 và nhận tâm Mặt trời là một tiêu điểm

Giải bài 6 trang 48 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Ngày 04/10/1957, Liên Xô đã phóng thành công vệ tinh nhân tạo đầu tiên vào không gian, vệ tinh mang tên Sputnik I.

Bài học bổ sung