Giải mục 1 trang 80, 81 SGK Toán 7 tập 1 - Kết nối tri thức

Hãy nêu tên tất cả các tam giác cân trong Hình 4.59. Với mỗi tam cân đó, hãy nêu tên cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của chúng.


Câu hỏi

Hãy nêu tên tất cả các tam giác cân trong Hình 4.59. Với mỗi tam cân đó, hãy nêu tên cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của chúng.

Phương pháp giải:

Tam giác cân là tam giác có hai cạnh bằng nhau. Hai cạnh bằng nhau đó gọi là 2 cạnh bên, cạnh còn lại của tam giác gọi là cạnh đáy.

Lời giải chi tiết:

+) Tam giác ABD cân tại đỉnh A có:

AB, AD là 2 cạnh bên

BD là cạnh đáy

\(\widehat B,\widehat D\) là 2 góc ở đáy

\(\widehat A\) là góc ở đỉnh

+) Tam giác ADC cân tại A có:

AC, AD là 2 cạnh bên

DC là cạnh đáy

\(\widehat C,\widehat D\) là 2 góc ở đáy

\(\widehat A\) là góc ở đỉnh

+) Tam giác ABC cân tại A có:

AB, AC là 2 cạnh bên

BC là cạnh đáy

\(\widehat C,\widehat B\) là 2 góc ở đáy

\(\widehat A\) là góc ở đỉnh


HĐ 1

Quan sát tam giác ABC cân tại A như Hình 4.60. Lấy D là trung điểm của đoạn thẳng BC.

a) Chứng minh rằng \(\Delta \) ABD = \(\Delta \) ACD theo trường hợp cạnh - cạnh - cạnh.

b) Hai góc B và C của tam giác ABC có bằng nhau không?

Phương pháp giải:

a)      Chứng minh ba cạnh của 2 tam giác trên bằng nhau

b)      Từ câu a) suy ra 2 cặp góc tương ứng bằng nhau.

Lời giải chi tiết:

a)      Xét hai tam giác ABD và ACD có:

AB=AC

AD chung

BD=DC

=>\(\Delta \)ABD = \(\Delta \)ACD (c.c.c)

b) Do \(\Delta \)ABD = \(\Delta \)ACD nên \(\widehat B = \widehat C\)( 2 góc tương ứng)


HĐ 2

Cho tam giác MNP có \(\widehat M = \widehat N\). Vẽ tia phân giác PK của tam giác \(MNP(K \in MN)\).

Chứng minh rằng:

a) \(\widehat {MKP} = \widehat {NKP}\);

b) \(\Delta MPK = \Delta NPK\);

c) Tam giác MNP có cân tại \(P\) không?

Phương pháp giải:

a) Sử dụng định lí: Tổng 3 góc trong một tam giác bằng 180 độ

b) Chứng minh 2 tam giác bằng nhau theo trường hợp góc – cạnh - góc

c) Sử dụng định nghĩa tam giác cân: Tam giác MNP cân là tam giác có 2 cạnh bằng nhau

Lời giải chi tiết:

a)

Xét tam giác MPK có:

\(\widehat {PKM} + \widehat {MPK} + \widehat {KMP} = {180^o}\)

Xét tam giác NPK có:

\(\widehat {PKN} + \widehat {NPK} + \widehat {KNP} = {180^o}\)

Mà \(\widehat {KMP} = \widehat {KNP};\,\,\,\widehat {MPK} = \widehat {NPK}\)

Suy ra \(\widehat {MKP} = \widehat {NKP}\).

b)Xét hai tam giác MPK và NPK có:

\(\widehat M = \widehat N\)

PK chung

\(\widehat {MKP} = \widehat {NKP}\)

=>\(\Delta MPK = \Delta NPK\)(g.c.g)

c) Do \(\Delta MPK = \Delta NPK\)nên MP=NP (2 cạnh tương ứng)

Suy ra tam giác MNP cân tại P.


Luyện tập 1

Tính số đo các góc và các cạnh chưa biết của tam giác DEF trong Hình 4.62.

Phương pháp giải:

Chứng minh tam giác DEF cân tại F từ đó suy ra số đo các góc.

Lời giải chi tiết:

Xét tam giác DEF có DF=FE(=4cm) nên tam giác DEF cân tại F.

Suy ra \(\widehat E = \widehat D = {60^o}\) ( tính chất tam giác cân)

Áp dụng định lí tổng ba góc trong tam giác vào tam giác DEF, ta có:

\(\begin{array}{l}\widehat D + \widehat E + \widehat F = {180^o}\\ \Rightarrow {60^o} + {60^o} + \widehat F = {180^o}\\ \Rightarrow \widehat F = {60^o}\end{array}\)


TTN

Thử thách nhỏ

Một tam giác có gì đặc biệt nếu thoả mãn một trong các điều kiện sau:

a) Tam giác có ba góc bằng nhau?

b) Tam giác cân có một góc bằng 60°?

Phương pháp giải:

Áp dụng: Tam giác đều là tam giác có 3 cạnh bằng nhau hoặc ba góc bằng nhau.

Lời giải chi tiết:

a)      Tam giác có ba góc bằng nhau là tam giác đều

b)      Tam giác cân có 1 góc bằng 60 độ là tam giác đều.



Bài học liên quan

Từ khóa phổ biến