Giải bài tập 1 trang 7 SGK Toán 12 tập 2 - Cánh diều

Hàm số \(F(x) = {x^3} + 5\) là nguyên hàm của hàm số: A. \(f(x) = 3{x^2}\) B. \(f(x) = \frac{{{x^4}}}{4} + 5x + C\) C. \(f(x) = \frac{{{x^4}}}{4} + 5x\) D. \(f(x) = 3{x^2} + 5x\)


Đề bài

Hàm số \(F(x) = {x^3} + 5\) là nguyên hàm của hàm số:

A. \(f(x) = 3{x^2}\)

B. \(f(x) = \frac{{{x^4}}}{4} + 5x + C\)

C. \(f(x) = \frac{{{x^4}}}{4} + 5x\)

D. \(f(x) = 3{x^2} + 5x\)

Phương pháp giải - Xem chi tiết

Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K

Lời giải chi tiết

\(F'(x) = 3{x^2}\)

Vậy F(x) là nguyên hàm của hàm số \(f(x) = 3{x^2}\)

Chọn A