Bài 9.3 phần bài tập bổ sung trang 11 SBT toán 8 tập 1

Giải bài 9.3 phần bài tập bổ sung trang 11 sách bài tập toán 8. Tìm x, biết:...


Tìm \(x,\) biết

LG a

\(\) \({x^2} - 2x - 3 = 0\)

Phương pháp giải:

+) Phân tích đa thức thành nhân tử: Tách hạng tử thành nhiều hạng tử để xuất hiện nhân tử chung.

+) Từ đó biến đổi về dạng: \(A.B=0\Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\)

Giải chi tiết:

\(\) \({x^2} - 2x - 3 = 0\)

\( \Leftrightarrow {x^2} - 2x + 1 - 4 = 0 \)

\(\Leftrightarrow {\left( {x - 1} \right)^2} - {2^2} = 0  \)

\( \Leftrightarrow \left( {x - 1 + 2} \right)\left( {x - 1 - 2} \right) = 0 \)

\(\Leftrightarrow \left( {x + 1} \right)\left( {x - 3} \right)=0 \)

Suy ra \( x + 1 = 0\) hoặc \(x - 3 = 0\)

+) Với \(x+1=0\Leftrightarrow x=-1\)

+) Với \(x-3=0\Leftrightarrow x=3\)

Vậy \(x =  - 1;\) \(x = 3\) 


LG b

\(\) \(2{x^2} + 5x - 3 = 0\) 

Phương pháp giải:

+) Phân tích đa thức thành nhân tử: Tách hạng tử thành nhiều hạng tử để xuất hiện nhân tử chung.

+) Từ đó biến đổi về dạng: \(A.B=0\Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\)

Giải chi tiết:

\(\) \(2{x^2} + 5x - 3 = 0\) 

\(\Leftrightarrow 2{x^2} + 6x - x - 3 = 0 \)\(\Leftrightarrow 2x\left( {x + 3} \right) - \left( {x + 3} \right) = 0  \)\(\Leftrightarrow \left( {x + 3} \right)\left( {2x - 1} \right) = 0  \)

Suy ra \( x + 3 = 0\) hoặc \(2x - 1 = 0\)

+) Với \(x+3=0\Leftrightarrow x=-3\)

+) Với \(2x-1=0\Leftrightarrow 2x=1\)\(\Leftrightarrow x=\dfrac {1}{2}\)

Vậy \(x =  - 3;\) \(x =\displaystyle{1 \over 2}\)  

Bài giải tiếp theo



Từ khóa phổ biến