Giải bài 9 trang 27 vở thực hành Toán 9

Tìm số tự nhiên n có hai chữ số, biết rằng nếu viết thêm chữ số 3 vào giữa hai chữ số của số n thì được một số lớn hơn số 2n là 585 đơn vị, và nếu viết hai chữ số của số n theo thứ tự ngược lại thì được một số nhỏ hơn số n là 18 đơn vị.


Đề bài

Tìm số tự nhiên n có hai chữ số, biết rằng nếu viết thêm chữ số 3 vào giữa hai chữ số của số n thì được một số lớn hơn số 2n là 585 đơn vị, và nếu viết hai chữ số của số n theo thứ tự ngược lại thì được một số nhỏ hơn số n là 18 đơn vị.

Phương pháp giải - Xem chi tiết

Các bước giải một bài toán bằng cách lập hệ phương trình:

Bước 1. Lập hệ phương trình:

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

- Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải hệ phương trình.

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Lời giải chi tiết

  • Gọi chữ số hàng chục của số n là x (\(x \in \mathbb{N},0 < x \le 9\)), chữ số hàng đơn vị của số n là y, (\(y \in \mathbb{N}\), \(0 \le y \le 9\)), nghĩa là \(n = 10x + y\).

Khi viết thêm chữ số 3 vào giữa hai chữ số của số n, ta được số \(\overline {x3y} \).

Số này lớn hơn 2n là 585 đơn vị nên ta có phương trình \(\left( {100x + 30 + y} \right) - 2\left( {10x + y} \right) = 585\) hay \(80x - y = 555\) (1).

Khi viết hai chữ số của n theo thứ tự ngược lại, ta được số \(10y + x\). Số này nhỏ hơn số n là 18 đơn vị nên ta có phương trình \(\left( {10x + y} \right) - \left( {10y + x} \right) = 18\) hay \(x - y = 2\) (2).

Từ (1) và (2), ta có hệ phương trình \(\left\{ \begin{array}{l}80x - y = 555\\x - y = 2\end{array} \right.\)

  • Giải hệ phương trình:

Trừ từng vế hai phương trình của hệ ta được \(79x = 553\), suy ra \(x = 7\).

Thay \(x = 7\) vào phương trình thứ hai của hệ ta được: \(7 - y = 2\), suy ra \(y = 5\).

  • Các giá trị \(x = 7\) và \(y = 5\) thỏa mãn các điều kiện của ẩn.

Vậy số cần tìm là 75.



Bài học liên quan

Từ khóa phổ biến