Giải bài 7 trang 14 SBT toán 10 - Chân trời sáng tạo

Với giá trị nào của tham số m thì: a) Phương trình \(4{x^2} + 2\left( {m - 2} \right)x + {m^2} = 0\) có nghiệm b) Phương trình \(\left( {m + 1} \right){x^2} + 2mx - 4 = 0\) có hai nghiệm phân biệt c) Phương trình \(m{x^2} + \left( {m + 1} \right)x + 3m + 10 = 0\) vô nghiệm


Đề bài

Với giá trị nào của tham số m thì:

a) Phương trình \(4{x^2} + 2\left( {m - 2} \right)x + {m^2} = 0\) có nghiệm

b) Phương trình \(\left( {m + 1} \right){x^2} + 2mx - 4 = 0\) có hai nghiệm phân biệt

c) Phương trình \(m{x^2} + \left( {m + 1} \right)x + 3m + 10 = 0\) vô nghiệm

d) Bất phương trình \(2{x^2} + \left( {m + 2} \right)x + \left( {2m - 4} \right) \ge 0\) có tập nghiệm là \(\mathbb{R}\)

e) Bất phương trình \( - 3{x^2} + 2mx + {m^2} \ge 0\) có tập nghiệm là \(\mathbb{R}\)

Phương pháp giải - Xem chi tiết

a, b, c)

Bước 1: Tính \(\Delta  = {b^2} - 4ac\) hoặc \(\Delta ' = b{'^2} - ac\) với \(b = 2b'\)

Bước 2:

            +) phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0\)

            +) phương trình có 1 nghiệm duy nhất \( \Leftrightarrow \Delta  = 0\)

            +) phương tình vô nghiệm \( \Leftrightarrow \Delta  < 0\)

Bước 3: Xét dấu tam thức bậc hai và kết luận.

d, e) \(f(x) \ge 0\;\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\)

Lời giải chi tiết

a) Phương trình \(4{x^2} + 2\left( {m - 2} \right)x + {m^2} = 0\) có nghiệm khi và chỉ khi \(\Delta ' \ge 0\)

hay \({\left( {m - 2} \right)^2} - 4{m^2} \ge 0 \Leftrightarrow  - 3{m^2} - 4m + 4 \ge 0 \Leftrightarrow  - 2 \le m \le \frac{2}{3}\)

Vậy \(m \in \left[ { - 2;\frac{2}{3}} \right]\)

b) Phương trình \(\left( {m + 1} \right){x^2} + 2mx - 4 = 0\) có hai nghiệm phân biệt khi và chỉ khi \(\left\{ \begin{array}{l}\Delta ' > 0\\m + 1 \ne 0\end{array} \right.\), hay \({m^2} - \left( {m + 1} \right).\left( { - 4} \right) > 0 \Leftrightarrow {m^2} + 4m + 4 > 0\) và \(m \ne  - 1\)

mà \({m^2} + 4m + 4 > 0\forall m \ne  - 2\)

Vậy với \(m \in \mathbb{R}\backslash \left\{ { - 2; - 1} \right\}\)thì phương trình \(\left( {m + 1} \right){x^2} + 2mx - 4 = 0\) có hai nghiệm phân biệt

c) Phương trình \(m{x^2} + \left( {m + 1} \right)x + 3m + 10 = 0\) vô nghiệm khi và chỉ khi \(\Delta  < 0\)

hay \({\left( {m + 1} \right)^2} - 4m\left( {3m + 10} \right) < 0 \Leftrightarrow  - 11{m^2} - 38m + 1 < 0 \Leftrightarrow \left[ \begin{array}{l}x < \frac{{ - 19 - 2\sqrt {93} }}{{11}}\\x > \frac{{ - 19 + 2\sqrt {93} }}{{11}}\end{array} \right.\)

Vậy khi \(m \in \left( { - \infty ;\frac{{ - 19 - 2\sqrt {93} }}{{11}}} \right) \cup \left( {\frac{{ - 19 + 2\sqrt {93} }}{{11}}; + \infty } \right)\) thì phương trình \(m{x^2} + \left( {m + 1} \right)x + 3m + 10 = 0\) vô nghiệm

d) Bất phương trình \(2{x^2} + \left( {m + 2} \right)x + \left( {2m - 4} \right) \ge 0\) có tập nghiệm là R

\( \Leftrightarrow 2{x^2} + \left( {m + 2} \right)x + \left( {2m - 4} \right) \ge 0\;\forall x \in \mathbb{R}\)

Vì \(a = 2 > 0\) nên để bất phương trình có tập nghiệm trên \(\mathbb{R}\) khi và chỉ khi \(\Delta  \le 0\)

hay \({\left( {m + 2} \right)^2} - 4.2\left( {2m - 4} \right) < 0 \Leftrightarrow {m^2} - 12m + 36 \le 0 \Leftrightarrow m = 6\)

Vậy \(m = 6\)

e) Bất phương trình \( - 3{x^2} + 2mx + {m^2} \ge 0\) có tập nghiệm là R

\( \Leftrightarrow  - 3{x^2} + 2mx + {m^2} \ge 0\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ \begin{array}{l}a =  - 3 > 0\\\Delta  \le 0\end{array} \right.\) (Vô lí)

Do đó bất phương trình không thể có tập nghiệm là \(\mathbb{R}\)

Vậy không có giá trị m thỏa mãn yêu cầu



Từ khóa phổ biến