Giải bài 6.32 trang 28 SGK Toán 10 – Kết nối tri thức

Giải các bất phương trình sau:


Đề bài

Giải các bất phương trình sau:

a)      \(2{x^2} - 3x + 1 > 0\)

b)     \({x^2} + 5x + 4 < 0\)

c)      \( - 3{x^2} + 12x - 12 \ge 0\)

d)     \(2{x^2} + 2x + 1 < 0.\)

Phương pháp giải - Xem chi tiết

-  Tìm nghiệm của các phương trình trên

-  Lập bảng xét dấu

-  Kết luận tập nghiệm của bất phương trình

Lời giải chi tiết

a)      \(2{x^2} - 3x + 1 > 0\)

Tam thức \(f\left( x \right) = 2{x^2} - 3x + 1\) có \(a + b + c = 2 - 3 + 1 = 0\) nên hai nghiệm phân biệt \({x_1} = 1\) và \({x_2} = \frac{1}{2}.\)

Mặt khác \(a = 2 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(x \in \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right).\)

b)     \({x^2} + 5x + 4 < 0\)

Tam thức \(f\left( x \right) = {x^2} + 5x + 4\) có \(a - b + c = 1 - 5 + 4 = 0\) nên phương trình có hai nghiệm phân biệt \(x =  - 1\) và \(x =  - 4.\)

Mặt khác \(a = 1 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S = \left( { - 4; - 1} \right).\)

c)      \( - 3{x^2} + 12x - 12 \ge 0\)

Tam thức \(f\left( x \right) =  - 3{x^2} + 12x - 12 =  - 3\left( {{x^2} - 4x + 4} \right) =  - 3{\left( {x - 2} \right)^2} \le 0\)

nên \(f\left( x \right)\) luôn âm với mọi \(x\)

\( \Rightarrow \) bất phương trình vô nghiệm

d)     \(2{x^2} + 2x + 1 < 0.\)

Tam thức \(f\left( x \right) = 2{x^2} + 2x + 1\) có \(\Delta  =  - 1 < 0,\) hệ số \(a = 2 > 0\) nên \(f\left( x \right)\) luôn dướng với mọi \(x,\) tức là \(2{x^2} + 2x + 1 > 0\) với mọi \(x \in \mathbb{R}.\)

\( \Rightarrow \) bất phương trình vô nghiệm



Từ khóa phổ biến