Giải bài 6.27 trang 28 SGK Toán 10 – Kết nối tri thức
Bất phương trình
Đề bài
Bất phương trình \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\) khi
A. \(m = - 1.\)
B. \(m = - 2.\)
C. \(m = 2.\)
D. \(m > 2.\)
Phương pháp giải - Xem chi tiết
- Tính \(\Delta = {b^2} - 4ac.\)
- Giải bất phương trình \(\Delta < 0\) để bất phương trình có nghiệm đúng với mọi \(x \in \mathbb{R}\)
Lời giải chi tiết
Để \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow \,\,\Delta ' < 0\\ \Leftrightarrow \,\,{\left( { - m} \right)^2} - 4 < 0\\ \Leftrightarrow \,\,{m^2} - 4 < 0\end{array}\)
Ta có \(f\left( m \right) = {m^2} - 4\) có hai nghiệm phân biệt \({m_1} = - 2\) và \({m_2} = 2.\)
Mặt khác: \(a = 1 > 0\) nên ta có bảng xét dấu sau:
Vậy tập nghiệm của bất phương trình là: \(S = \left( { - 2;2} \right).\)
Chọn A.
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 6.27 trang 28 SGK Toán 10 – Kết nối tri thức timdapan.com"