Giải bài 6.10 trang 16 SGK Toán 10 – Kết nối tri thức

Xác định parabol y = ax^2 + bx + c , biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; -12)


Đề bài

Xác định parabol \(y = a{x^2} + bx + c\) , biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; -12)

Phương pháp giải - Xem chi tiết

Đồ thị hàm số \(y = a{x^2} + bx + c\) có đỉnh là \(I\left( {\frac{{ - b}}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\) => tìm a,b,c.

Lời giải chi tiết

Đồ thị hàm số  \(y = a{x^2} + bx + c\) đi qua điểm A(8; 0) nên:

\(a{.8^2} + b.8 + c = 0 \Leftrightarrow 64a + 8b + c = 0\)

Đồ thị hàm số  \(y = a{x^2} + bx + c\) có đỉnh là I(6;-12):

\(\frac{{ - b}}{{2a}} = 6 \Leftrightarrow  - b = 12a \Leftrightarrow 12a + b = 0\)

\(a{.6^2} + 6b + c =  - 12 \Leftrightarrow 36a + 6b + c =  - 12\)

Từ 3 phương trình trên ta có: \(a = 3;b =  - 36,c = 96\)

=> Hàm số cần tìm là \(y = 3{x^2} - 36x + 96\)



Từ khóa phổ biến