Giải bài 5 trang 28 SGK Toán 8 tập 1 - Cánh diều
Phân tích mỗi đa thức sau thành nhân tử:
Đề bài
Phân tích mỗi đa thức sau thành nhân tử:
a) \({\left( {x + 2y} \right)^2} - {\left( {x - y} \right)^2}\) b) \({\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}\)
c) \(\left( {2y - 3} \right)x + 4y\left( {2y - 3} \right)\) d) \(10{\rm{x}}\left( {x - y} \right) - 15{{\rm{x}}^2}\left( {y - x} \right)\)
e) \({x^3} + 3{{\rm{x}}^2} + 3{\rm{x}} + 1 - {y^3}\) g) \({x^3} - 2{{\rm{x}}^2}y + x{y^2} - 4{\rm{x}}\)
Phương pháp giải - Xem chi tiết
Vận dụng trực tiếp hằng đẳng thức hoặc vận dụng hằng đẳng thức để nhóm các hạng tử để phân tích đa thức thành nhân tử.
Lời giải chi tiết
a) \(\begin{array}{l}{\left( {x + 2y} \right)^2} - {\left( {x - y} \right)^2}\\ = \left( {x + 2y + x - y} \right)\left( {x + 2y - x + y} \right)\\ = \left( {2{\rm{x}} + y} \right).3y\end{array}\)
b) \(\begin{array}{l}{\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}\\ = \left( {x + 1 + x - 1} \right)\left[ {{{\left( {x + 1} \right)}^2} - \left( {x + 1} \right)\left( {x - 1} \right) + {{\left( {x - 1} \right)}^2}} \right]\\ = 2{\rm{x}}\left[ {{x^2} + 2{\rm{x}} + 1 - \left( {{x^2} - 1} \right) + {x^2} - 2{\rm{x}} + 1} \right]\\ = 2{\rm{x}}\left( {{x^2} + 2{\rm{x}} + 1 - {x^2} + 1 + {x^2} - 2{\rm{x}} + 1} \right)\\ = 2{\rm{x}}\left( {{x^2} + 3} \right)\end{array}\)
c) \(\left( {2y - 3} \right)x + 4y\left( {2y - 3} \right) = \left( {2y - 3} \right)\left( {1 + 4y} \right)\)
d) \(\begin{array}{l}10{\rm{x}}\left( {x - y} \right) - 15{{\rm{x}}^2}\left( {y - x} \right)\\ = 10{\rm{x}}\left( {x - y} \right) + 15{{\rm{x}}^2}\left( {x - y} \right)\\ = \left( {x - y} \right)\left( {10{\rm{x}} + 15{{\rm{x}}^2}} \right)\\ = \left( {x - y} \right).5{\rm{x}}\left( {2 + 3{\rm{x}}} \right)\\ = 5{\rm{x}}\left( {x - y} \right)\left( {2 + 3{\rm{x}}} \right)\end{array}\)
e) \(\begin{array}{l}{x^3} + 3{{\rm{x}}^2} + 3{\rm{x}} + 1 - {y^3}\\ = \left( {{x^3} + 3{{\rm{x}}^2} + 3{\rm{x}} + 1} \right) - {y^3}\\ = {\left( {x + 1} \right)^3} - {y^3}\\ = \left( {x + 1 - y} \right)\left[ {{{\left( {x + 1} \right)}^2} + \left( {x + 1} \right)y + {y^2}} \right]\end{array}\)
g) \(\begin{array}{l}{x^3} - 2{{\rm{x}}^2}y + x{y^2} - 4{\rm{x}}\\{\rm{ = }}\left( {{x^3} - 2{{\rm{x}}^2}y + x{y^2}} \right) - 4{\rm{x}}\\ = x\left( {{x^2} - 2{\rm{x}}y + {y^2}} \right) - 4{\rm{x}}\\ = x{\left( {x - y} \right)^2} - 4{\rm{x}}\\ = x\left[ {{{\left( {x - y} \right)}^2} - {2^2}} \right]\\ = x\left( {x - y + 2} \right)\left( {x - y - 2} \right)\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 5 trang 28 SGK Toán 8 tập 1 - Cánh diều timdapan.com"