Giải bài 3 trang 28 SGK Toán 8 tập 1 - Cánh diều

Viết mỗi biểu thức sau dưới dạng bình phương, lập phương của một tổng hoặc một hiệu:


Đề bài

Viết mỗi biểu thức sau dưới dạng bình phương, lập phương của một tổng hoặc một hiệu:

\(a){x^2} + \dfrac{1}{2}x + \dfrac{1}{{16}}\)                                                        \(b)25{{\rm{x}}^2} - 10{\rm{x}}y + {y^2}\)

\(c){x^3} + 9{{\rm{x}}^2}y + 27{\rm{x}}{y^2} + 27{y^3}\)                                    \(d)8{{\rm{x}}^3} - 12{{\rm{x}}^2}y + 6{\rm{x}}{y^2} - {y^3}\)

Phương pháp giải - Xem chi tiết

Vận dụng các hằng đẳng thức đã học để viết các biểu thức.

Lời giải chi tiết

\(a){x^2} + \dfrac{1}{2}x + \dfrac{1}{{16}} = {x^2} + 2.x.\dfrac{1}{4} + {\left( {\dfrac{1}{4}} \right)^2} = {\left( {x + \dfrac{1}{4}} \right)^2}\)

\(b)25{{\rm{x}}^2} - 10{\rm{x}}y + {y^2} = {\left( {5{\rm{x}}} \right)^2} - 2.5{\rm{x}}.y + {y^2} = {\left( {5{\rm{x}} - y} \right)^2}\)

\(\begin{array}{l}c){x^3} + 9{{\rm{x}}^2}y + 27{\rm{x}}{y^2} + 27{y^3}\\ = {x^3} + 3{{\rm{x}}^2}.3y + 3.x.{\left( {3y} \right)^2} + {\left( {3y} \right)^3}\\ = {\left( {x + 3y} \right)^3}\end{array}\)

\(\begin{array}{l}d)8{{\rm{x}}^3} - 12{{\rm{x}}^2}y + 6{\rm{x}}{y^2} - {y^3}\\ = {\left( {2{\rm{x}}} \right)^3} - 3.{\left( {2{\rm{x}}} \right)^2}.y + 3.2{\rm{x}}.{y^2} - {y^3}\\ = {\left( {2{\rm{x}} - y} \right)^3}\end{array}\)



Bài học liên quan

Từ khóa phổ biến