Giải bài 4.17 trang 88 SGK Toán 8 tập 1 - Kết nối tri thức
Cho hình bình hành ABCD,
Đề bài
Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB theo thứ tự tại M, N, K. Chứng minh rằng: \(D{M^2}\) = MN . MK.
Phương pháp giải - Xem chi tiết
Áp dụng định lí Thalès cho AN // CD, CK // AD, ta có các tỉ lệ thức. Từ đó ta suy ra đpcm.
Lời giải chi tiết
Vì ABCD là hình bình hành nên AB // CD, AD // BC suy ra AN // CD, AD // CK.
Áp dụng định lí Thalès vào tam giác AMN có AN // CD, ta được:
\(\dfrac{{DM}}{{MN}} = \dfrac{{CM}}{{AM}}\) (1)
Áp dụng định lí Thalès vào tam giác ADM có CK // AD, ta được:
\(\dfrac{{MK}}{{DM}} = \dfrac{{CM}}{{AM}}\) (2)
Từ (1) và (2) suy ra: \(\dfrac{{DM}}{{MN}} = \dfrac{{MK}}{{DM}} = \dfrac{{CM}}{{AM}}\)
Do đó DM2 = MN . MK (đpcm).
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 4.17 trang 88 SGK Toán 8 tập 1 - Kết nối tri thức timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 4.17 trang 88 SGK Toán 8 tập 1 - Kết nối tri thức timdapan.com"