Giải bài 4 trang 82 SGK Toán 8 – Cánh diều
Cho Hình 77, chứng minh
Đề bài
Cho Hình 77, chứng minh
a) \(\widehat {ABC} = \widehat {BED}\)
b) \(BC \bot BE\)
Hình 77
Phương pháp giải - Xem chi tiết
a) Chứng minh \(\Delta ABC \backsim \Delta DEB\) từ đó suy ra cặp góc bằng nhau.
b) Chứng minh \(\widehat {CBE} = 90^\circ \)
Lời giải chi tiết
a) Ta thấy \(\frac{{AB}}{{DE}} = \frac{2}{4} = \frac{1}{2};\,\,\frac{{AC}}{{DB}} = \frac{3}{6} = \frac{1}{2}\)
\( \Rightarrow \frac{{AB}}{{DE}} = \frac{{AC}}{{DB}}\)
Xét tam giác ABC và tam giác DEB có:
\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DB}}\) và \(\widehat {CAB} = \widehat {BDE} = 90^\circ \)
\( \Rightarrow \Delta ABC \backsim \Delta DEB\) (c-g-c)
\( \Rightarrow \widehat {ABC} = \widehat {BED}\)
b) Vì \(\Delta ABC \backsim \Delta DEB\) nên \(\widehat {ACB} = \widehat {DBE}\)
Mà tam giác ABC vuông tại A nên \(\widehat {ACB} + \widehat {ABC} = 90^\circ \) hay \(\widehat {DBE} + \widehat {ABC} = 90^\circ \)
Ta thấy
\(\begin{array}{l}\widehat {DBE} + \widehat {CBE} + \widehat {ABC} = 180^\circ \\ \Rightarrow \widehat {CBE} + 90^\circ = 180^\circ \\ \Rightarrow \widehat {CBE} = 90^\circ \end{array}\)
Vậy \(BC \bot BE\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 4 trang 82 SGK Toán 8 – Cánh diều timdapan.com"