Giải Bài 4 trang 30 sách bài tập toán 7 - Chân trời sáng tạo
Cho ba đa thức \(P\left( x \right) = 3{x^4} - 2{x^2} + 8x - 10\); \(Q\left( x \right) = 4{x^3} - 6{x^2} + 7x - 1\) và \(R\left( x \right) = - 3{x^4} + 5{x^2} - 8x - 5\). Tính \(P\left( x \right) + Q\left( x \right) + R\left( x \right)\) và \(P\left( x \right) - Q\left( x \right) - R\left( x \right)\).
Đề bài
Cho ba đa thức \(P\left( x \right) = 3{x^4} - 2{x^2} + 8x - 10\); \(Q\left( x \right) = 4{x^3} - 6{x^2} + 7x - 1\) và \(R\left( x \right) = - 3{x^4} + 5{x^2} - 8x - 5\). Tính \(P\left( x \right) + Q\left( x \right) + R\left( x \right)\) và \(P\left( x \right) - Q\left( x \right) - R\left( x \right)\).
Phương pháp giải - Xem chi tiết
Bước 1: Thực hiện cộng trừ các đơn thức cùng một biến để rút gọn đa thức đã cho.
Bước 2: Sắp xếp các đơn thức theo lũy thừa giảm dần của biến.
Bước 3: Thực hiện phép tính theo hàng ngang hoặc cột dọc.
Lời giải chi tiết
\(\begin{array}{*{20}{c}}{}&{3{x^4}}&{}&{}& - &{2{x^2}}& + &{8x}& - &{10}\\ + &{}&{}&{}&{}&{}&{}&{}&{}&{}\\{}&{}&{}&{4{x^3}}& - &{6{x^2}}& + &{7x}& - &1\\ + &{}&{}&{}&{}&{}&{}&{}&{}&{}\\{}&{ - 3{x^4}}&{}&{}& + &{5{x^2}}& - &{8x}& - &5\\\hline{}&{}&{}&{4{x^3}}& - &{3{x^2}}& + &{7x}& - &{16}\end{array}\)
Vậy \(P\left( x \right) + Q\left( x \right) + R\left( x \right) = 4{x^3} - 3{x^2} + 7x - 16\)
\(\begin{array}{*{20}{c}}{}&{3{x^4}}&{}&{}& - &{2{x^2}}& + &{8x}& - &{10}\\ - &{}&{}&{}&{}&{}&{}&{}&{}&{}\\{}&{}&{}&{4{x^3}}& - &{6{x^2}}& + &{7x}& - &1\\ - &{}&{}&{}&{}&{}&{}&{}&{}&{}\\{}&{ - 3{x^4}}&{}&{}& + &{5{x^2}}& - &{8x}& - &5\\\hline{}&{6{x^4}}& - &{4{x^3}}& - &{{x^2}}& + &{9x}& - &4\end{array}\)
Vậy \(P\left( x \right) - Q\left( x \right) - R\left( x \right) = 6{x^4} - 4{x^3} - {x^2} + 9x - 4\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải Bài 4 trang 30 sách bài tập toán 7 - Chân trời sáng tạo timdapan.com"