Giải bài 3.40 trang 43 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Tính độ dài cạnh và số đo các góc còn lại của tam giác
Đề bài
Cho tam giác \(ABC\) có \(AB = 1,\,\,BC = 2,\,\,\widehat {ABC} = {60^ \circ }.\) Tính độ dài cạnh và số đo các góc còn lại của tam giác
Phương pháp giải - Xem chi tiết
- Áp dụng định lý cosin để tính cạnh \(AC\):
\(A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\)
- Áp dụng định lý sin để tính các \(\widehat A,\,\,\widehat C\): \(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}.\)
Lời giải chi tiết
Độ dài cạnh \(AC\) là:
Áp dụng định lý cosin, ta có:
\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\\ \Rightarrow \,\,A{C^2} = 1 + 4 - 2.1.2.\cos {60^ \circ } = 3\\ \Rightarrow \,\,AC = \sqrt 3 .\end{array}\)
Áp dụng định lý sin, ta có:
\(\left\{ {\begin{array}{*{20}{c}}{\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}}}\\{\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\sin A = \frac{{BC.\sin B}}{{AC}} = \frac{{2.\sin {{60}^ \circ }}}{{\sqrt 3 }} = 1}\\{\sin C = \frac{{AB.\sin B}}{{AC}} = \frac{{1.\sin {{60}^ \circ }}}{{\sqrt 3 }} = \frac{1}{2}}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\widehat A = {{90}^ \circ }}\\{\widehat C = {{30}^ \circ }}\end{array}} \right.} \right.} \right.\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 3.40 trang 43 sách bài tập toán 10 - Kết nối tri thức với cuộc sống timdapan.com"